RESEARCH ABOUT THE USE OF BACTERIAL BIOMASS OF
THIOBACILLUS FERROOXIDANS IN THE RECOVERING OF HEAVY
METALS FROM POLLUTED MEDIUM

Tatiana PASCU¹, T. VISAN²

¹National Institute of Research and Development in Soil Science, Agrochemistry and Environment - ICPA Bucharest, Bd. Marasesti 61, Bucharest 011464, Romania
²University POLITEHNICA of Bucharest, Spl. Independentei 313, Bucharest 066004, Romania
E-mail: tpascu@yahoo.com

Abstract: Pollution has become along the years a serious problem, difficult to solve. Developing of the industry was lead to a rising of wastes quantities, those has been accumulated in air, water and soil, when the raw resources are fewer and fewer. Classical wastes contain a large variety of pollutant but the heavy metals, toxic for human and also for environment represent a important part. In present is wide accepted idea of using biotechnology and microbiological meaning for clearing pollution of certain ecosystems from an organics compound of heavy metals type. This involves certain phenomenon’s, being translocation, such bioremediation, being biological modification of those metals for forming compounds less toxics or with low mobility. Recovering of heavy metals from solution can be achieved using two big group of technique, which resides by involving of electrochemical reaction. In parallel with electrochemical treatment (electrolyses, electrodeposition, electrodialysis, electrocoagulation) exist physicochemicals based on chemical precipitation, cementation and absorption on ion exchange resins, oomoses and sticking metals to biomass. This last technique can resides by bio-absorption of metallic ions on biological surfaces dead or alive, by intercellular accumulation (living biomass) or by bioprecipitation. For studies regarding evaluation of retaining capabilities by microorganisms, presented in this work, was used two strain of bacteria’s Tf DSM583 and Tf BRGM and 3 growing mediums: 9K, 9KM si 9Opt. Was used standard solution of uSO₄, ZnSO₄, CdSO₄, CrSO₄ with a concentration of 10⁻³M. Thiobacillus ferrooxidans, an acidophilic, aerobic, chemolithoautotrophic, gram-negative bacterium, shows a high, natural level of resistance to heavy metals. Microbial growth has been estimated by the measurement of bacterial metabolism characterized by ferrous iron oxidation. This bacterial oxidation is characterized by the Fe²⁺/ (Fe²⁺ + Fe³⁺) ration. Fe²⁺ concentration has been determined by colorimetric dosing of iron on a probe (10µl) by the phenanthroline method. Quantities of metallic ions recovered by bacteria Thiobacillus ferrooxidans was determined by polarographic technique for ions of Zn(II), Cd(II), Cu(II) and by colorimetric technique for Cr(VI).

Key words: heavy metals, Thiobacillus ferrooxidans, strain, biomass

INTRODUCTION

In present is wide accepted idea of using biotechnology and microbiological meaning for clearing pollution of certain ecosystems from an organics compound of heavy metals type. This involves certain phenomenon’s, being trans-location, such bioremediation, being biological modification of those metals for forming compounds less toxics or with low mobility.

In condition of industrialized society, often, some toxic compounds for plants and animals pollute the environment. Some of them get lost, being degraded to an inoffensive level, other remain.

As it seems, disappearing of those from environment by dilution to very small concentration, hard to determine by classic methods, do not represent a guaranties of ecologic
security. Certain biological process on long terms can determine a concentration for certain toxic substances some times to a value multiplied by hundred or thousands against superior level from environment, by complex mechanism of bioaccumulation.

In those processes beside detoxification function, microorganisms, can action as a extern factor highly important for including of heavy metals in tropic network because intense metabolic activities, also the level of rapport surface/volume tend to unity.

Recovering of heavy metals from solution can be achieved using two big group of technique, which resides by involving of electrochemical reaction. In parallel with electrochemical treatment (electrolyses, electrodeposition, electrodialysis, electrocagulation) exist physicochemicals based on chemical precipitation, cementation and absorption on ion exchange resins, osmoses and sticking metals to biomass. This last technique can resides by bio-absorption of metallic ions on biological surfaces dead or alive, by intercellular accumulation (living biomass) or by bio-precipitation.

From recent past, bio-absorption is studied in detail for bio absorbents which are not sub-product un unvalued of many industries. Microorganism had demonstrated a high capacity of recovering metallic ions, highly above bio-absorbents researched as usual until present (industrial waste).

MATERIAL AND METHODS

Has been used two types of strains of *Thiobacillus ferrooxidans* : *Thiobacillus ferrooxidans DSM583* (Tf DSM583), which come from German Collection of Microorganisms and Cell Culture and *Thiobacillus ferrooxidans BRGM* (Tf BRGM), which been isolated by Bureau de Recherche Geologique et Miniere, France.

For growing of those two strains of the bacteria *Thiobacillus ferrooxidans* was used three growing media: 9K (0.4g/L MgSO₄·7H₂O, (NH₄)₂SO₄, K₂HPO₄, 33.3 g/L FeSO₄·7H₂O), 9KM (0.5g/L MgSO₄·7H₂O, 3g/L (NH₄)₂SO₄, 0.5g/L KH₂PO₄, 0.1g/L KCl, 0.01g/L Ca(NO₃)₂, 0.4g/L CuSO₄·5H₂O, 44.2 g/L FeSO₄·7H₂O) and 9KOpt (0.1g/L MgSO₄·7H₂O, 10g/L (NH₄)₂SO₄, K₂HPO₄, 0.001g/L CuSO₄, CuSO₄·5H₂O, ZnSO₄, H₃BO₃, 100 g/L FeSO₄·7H₂O).

Thiobacillus ferrooxidans, an acidophilic, aerobic, chemolithoautotrophic, gram-negative bacterium, shows a high, natural level of resistance to heavy metals.

Precultures was been realized in 100 ml-flasks which contain 20 ml of sterile 9K medium. Sterilized solution of salt and of water pH 1.4 has been done with autoclave (20 min at 120°C) in mean time iron solution has been sterilized by 0.2 μm filters. Steering has been done with a plane rotating at 100 rpm and aeration by diffusion of starting from surfaces of liquid. Cultures have been carried out in Erlenmeyer glasses of 1 L which contain 500ml of unsterile medium. Agitation and aeration has been carried out by rotating agitation.

Microbial growth has been estimated by the measurement of bacterial metabolism characterized by ferrous iron oxidation. This bacterial oxidation is characterized by the Fe²⁺/(Fe²⁺ + Fe³⁺) ration. Fe³⁺ concentration has been determined by colorimetric dosing of iron on a probe (10μl) by the phenanthroline method.

Recovering of concentrated biomass has been done by centrifugation, after the percentage of Fe²⁺/(Fe²⁺ + Fe³⁺) has reach 10%.

Protein concentration was determined by Lowry method. The bacterial dry weight was calculated by multiplication of protein concentration by factor of 1.67.

RESULTS AND DISCUSSIONS

Studies regarding capacity of recovering ions of Cu¹¹⁺, Zn¹²⁺, Cd¹¹⁺, Cr⁶⁺ by those two strains of *Thiobacillus ferrooxidans* has been carried out using standard solution of CuSO₄, ZnSO₄, CdSO₄, CrSO₄ with a concentration of 10⁻⁵M. For all solution was used H₂SO₄ pH 1.4
Quantities of metallic ions recovering by bacteria *Thiobacillus ferrooxidans* was obtained by polargraphic technique, for ions of Zn(II), Cd(II), Cu(II) and colorimetric technique for Cr(VI).

Influence of the growing medium over recovery capacity of metallic ions by *Tf DSM 583* si *Tf BRGM* are shown in fig. 1 and fig. 2.

Was noted that in cases of ions of Zn(II), Cd(II), Cu(II) and Cr(VI) capacity of recovering by strain of *Tf BRGM* was clear superior against *Tf DSM583* for medium 9K and 9KM, with exception of Cr(VI) for medium 9KM. Same observation can be made for recovery capacity ions of Zn(II) by strain *Tf BRGM* developed in medium 9KOpt is inferior or equal with a strain of *Tf DSM583* developed in same medium.

Figure 1. Variation of metallic quantities recovered by bacterial biomass of *Tf DSM 583* depending on the medium

Influence of the variation of concentration of FeSO₄ in medium 9K against recovering capacities of those two strains used in this work - *Tf DSM583* and *Tf BRGM* - was studied for three growing media, which have been: medium 9K20 which contain 20g/L FeSO₄ instead of 33.3g/L FeSO₄ contained in initial medium 9K, medium 9K40 which contain 40g/L FeSO₄ and medium 9K50 which contain 50 g/L FeSO₄.

In case of variation quantities of FeSO₄ in all cases, recovery capacity of strain *Tf BRGM* is superior recovery capacity of strain *Tf DSM583* for all four metals taken into account with exception of Cr(VI) which represent a better recovery capacity of strain *Tf DSM583* in case of medium 9K40.

Influences of the ions of Ca(II), Cu(II) or Zn(II), present in medium 9K against recovering capacities of strain *Tf DSM583* has been studied in case of adding in medium 9K of a quantities of 0.4 g/L CuSO₄, 10⁻³ g/L CaSO₄ or 10⁻³ g/L ZnSO₄.

When adding to medium 9K a quantities of CuSO₄, CaSO₄ or ZnSO₄, recovery
capacity of heavy metals by strain *Tf BRGM* is net superior or equal with strain *Tf DSM583*. Also, exist exceptions: in case of recovering ion of ZnII, capacity of recovering is bigger for strain *Tf DSM583* developed in medium 9KCu than strain *Tf BRGM* similar obtained and in case of recovering ion of CrVI for medium 9KZn.

Figure 2. Variation of metallic quantities recovered by bacterial biomass of *Tf BRGM* depending on the medium

Figure 3. Variation of metallic quantities recovered by bacterial biomass of *Tf DSM583* depending on the quantities of FeSO$_4$ from medium 9K
Figure 4. Variation of metallic quantities recovered by bacterial biomass of *TjBRGM* depending on the quantities of FeSO$_4$ from medium 9K.

Figure 5. Variation of metallic quantities recovered by bacterial biomass of *TjDSM583* depending on the quantities of CuSO$_4$, CaSO$_4$, ZnSO$_4$ from medium 9K.
Figure 6. Variation of metallic quantities recovered by bacterial biomass of TfBRGM depending on the quantities of CuSO₄, CaSO₄, ZnSO₄ from medium 9K

CONCLUSIONS

- Growing medium used for growing of those two strains of *Thiobacillus ferrooxidans* – Tf DSM583 and Tf BRGM- has influence against metallic ion recovery capacity.
- The strain *Tf BRGM* represent a high capacity for recovering heavy metals ions than strain *Tf DSM583* indifferent of use medium: ex. *Tf BRGM* can recovery twice more Cadmium (293 mg/g dry biomass) than *Tf DSM583* (151.3 mg/g dry biomass) in medium 9K.
- Recovery capacity of heavy metals by those two strains of *Thiobacillus ferrooxidans* is direct proportional with rising of quantities of FeSO₄ in growing medium.
- Generally speaking, adding CaSO₄ or ZnSO₄, components of medium 9KOpt, and CuSO₄, medium 9KM component in the medium 9K leads to decrease the recovery capacity of the two strains of *Thiobacillus ferrooxidans* used.

BIBLIOGRAPHY