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Abstract. Monitoring the distribution of clouds and snow cover is essential for climate,
hydrological, and natural hazard management studies. This paper presents a Python-based algorithm for
the automatic extraction and mapping of clouds and snow using satellite data acquired by the MERSI
sensor onboard the FY-3D platform. The methodology relies on processing visible, near-infrared, SWIR,
and thermal infrared spectral channels, combined with the computation of spectral indices such as the
Normalized Difference Snow Index (NDSI). The algorithm applies combined spectral thresholds (red and
NIR reflectance, brightness temperature, and NDSI values) to separate the target classes: clouds (white)
and snow (blue). The results are exported as colored rasters (GeoTIFF) and vectorized into interoperable
formats (GeoJSON, KML) for GIS applications and visualization in Google Earth. The implementation
integrates spatial interpolation of geolocation data, polygon simplification, and automatic legend
generation. Tests carried out on FY-3D datasets have demonstrated the method’s effectiveness in
distinguishing between cloud-covered and snow-covered areas, with strong potential for extension
toward near real-time operational monitoring. The proposed approach combines algorithmic simplicity
with the flexibility of integration into geospatial processing workflows, providing a practical tool for
climate, agricultural, and water resource management applications. The findings highlight the relevance
of using Chinese FY-3D sensors for regional and global monitoring, as well as the importance of
developing open, reproducible, and adaptable algorithms for diverse satellite data sources.
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INTRODUCTION

Monitoring snow cover and cloud distribution is essential for understanding the
Earth’s energy balance, hydrological cycles, and climate dynamics. Snow strongly affects the
albedo of the Earth's surface, influencing regional and global temperature regimes (HALL,
2002). Accurate and timely information about snow cover is crucial for water resource
management, avalanche risk assessment, and climate change studies (DOZIER, 1989). Clouds,
on the other hand, play a significant role in the radiation budget and are a major source of
uncertainty in remote sensing data interpretation (KING, 2013).

Over the last decades, numerous satellite-based approaches have been developed to
detect snow and clouds. One of the most widely used algorithms is the MODIS Snow Cover
Algorithm, which relies on the Normalized Difference Snow Index (NDSI) to separate snow
from other land cover types (HALL, 2016). While these approaches have been successfully
applied using sensors such as MODIS and Sentinel-2, there is a growing need for algorithms
that can process data from emerging satellite platforms, especially those offering high temporal
resolution and free access (Figure 1).
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Figure 1. MODIS Snow and Ice Global Mapping Project (https://modis-snow-ice.gsfc.nasa.gov).

The FY-3D satellite, part of the FengYun series developed by the China
Meteorological Administration (http://satellite.nsmc.org.cn/DataPortal/en/home/index.html), is
equipped with the MERSI (Medium Resolution Spectral Imager) sensor, which provides
data across visible, near-infrared (NIR), shortwave infrared (SWIR), and thermal infrared
(TIR) bands. Despite the significant potential of this dataset, relatively few studies have
explored its application for snow and cloud detection at regional or global scales (ZHANG,
2021).

The main objective of this study is to develop and implement a Python-based
algorithm for the automatic detection and mapping of snow and clouds using FY-3D MERSI
data. The algorithm integrates spectral thresholding techniques and spectral indices, such as the
NDSI, and outputs geospatial products compatible with GIS platforms and visualization tools
such as Google Earth. This approach aims to provide a reproducible, open, and adaptable
methodology that can support applications in climate monitoring, water management, and
natural hazard prevention.

MATERIAL AND METHODS

The study focuses on a test region located in a mountainous area prone to seasonal
snow cover and frequent cloud formation. The datasets used in this research were acquired by
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the FY-3D MERSI sensor, which contains 25 spectral bands covering the visible, near-infrared
(NIR), shortwave infrared (SWIR), and thermal infrared (TIR) regions.

The sensor provides a spatial resolution of 250 m for visible and NIR bands and 1 km
for thermal bands, with a daily revisit capability, making it suitable for near real-time
monitoring. The data was obtained through the National Satellite Meteorological Center
(NSMC) data portal (http://satellite.nsmc.org.cn/DataPortal/en/home/index.html, Figure 2).

scale
Figure 2. Show originale image FY3D_MERSI_GBAL_L1_20241022_0625_1000M_MS.HDF in
SMART 2.0 apliccation.

Map Coordinates: 314533, -1198.83  Screen Coordinates: 1484, 454

For the detection of snow and clouds, four key spectral bands were selected:

Visible (RED) — Band 1 (0.65 pm)

NIR — Band 2 (0.865 um)

SWIR — Band 6 (1.64 pum)

Thermal Infrared (TIR) — Band 20 (11 pm)

The first stage of the workflow consisted of data preprocessing to ensure accurate
input for subsequent analysis. Initially, radiometric calibration was applied to convert the raw
digital numbers (DN) into physically meaningful reflectance and brightness temperature
values. Next, geolocation interpolation was carried out using the satellite navigation files,
which allowed each pixel to be accurately positioned in geographic coordinates. Afterward, the
dataset was subsetted to the area of interest, reducing computational load and focusing on the
target region. Finally, a cloud masking preparation step was introduced to identify potential
cloud pixels based on their high reflectance and low temperature values, setting the stage for
further classification.

The core of the methodology was implemented in Python, utilizing open-source
libraries such as NumPy, Rasterio, GDAL, and Shapely. The workflow followed a sequential
structure that integrated spectral indices, thresholding techniques, and spatial processing to
generate final geospatial products (Figure 3).
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Figure 3. Processing workflow for snow and cloud classification from FY-3D MERSI data.

The first analytical step involved the calculation of the Normalized Difference Snow
Index (NDSI), which is widely used to differentiate snow from other land covers due to its high
reflectance in the visible spectrum and low reflectance in the SWIR region.
The Normalized Difference Snow Index (NDSI) was computed using the formula:

Green — SWIR
Green + SWIR

NDSI =

11

following the definition used in Landsat and MODIS snow detection algorithms (e.g. HALL et
al. 1994; USGS).” This index served as the foundation for distinguishing snow pixels in
subsequent steps.

Once the NDSI was calculated, a spectral thresholding process was applied to classify
pixels into different categories. Snow was identified by a combination of characteristics,
including high reflectance in the visible spectrum, low reflectance in the SWIR band, and
positive NDSI values. Conversely, clouds were characterized by high reflectance in both
visible and SWIR bands, accompanied by low brightness temperatures, as detected by the TIR
band.
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The following thresholds were established based on empirical analysis:
RED reflectance > 0.4

NIR reflectance > 0.3
NDSI > 0.4 for snow
Brightness Temperature < 270 K for clouds

This step allowed for a clear separation between snow-covered and cloud-covered
areas while excluding other land covers such as vegetation and bare soil.

Following thresholding, pixels were assigned to specific classes to generate a clear,
interpretable map:

e  Snow pixels were labeled and visualized in blue,
e Cloud pixels were assigned to the color white,

o All other land cover types were displayed as transparent or black, serving as
background.

This color coding facilitated quick visual interpretation and verification of
classification results (Figure 4).

Figure 4. Map of pixel classification distinguishing snow-covered regions.

The final stage involved exporting the classification results into interoperable
geospatial formats. The classified raster was first saved as a GeoTIFF, suitable for standard
GIS applications. Subsequently, the raster was vectorized to generate GeoJSON and KML
layers, enabling visualization in platforms such as Google Earth (Figure 5).
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To optimize file performance, a polygon simplification algorithm was applied, reducing data
complexity without compromising spatial accuracy.
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Figure 5. Export and vectorization of the classified raster into interoperable geospatial formats (GeoTIFF,
GeoJSON, KML) with polygon simplification for optimized visualization and spatial accuracy.

These final products were designed to integrate seamlessly into existing geospatial workflows,
supporting both analysis and decision-making processes.

All processing stages were interconnected, forming a continuous workflow from raw
satellite data to geospatially usable products. The preprocessing phase ensured data reliability
and spatial consistency, providing a sound basis for subsequent analysis. The calculation of the
Normalized Difference Snow Index (NDSI) offered a robust spectral indicator for snow
detection, which was further refined through spectral thresholding to effectively discriminate
between snow and clouds. The subsequent class assignment step translated the thresholded
results into a visually interpretable thematic map, while the final export stage ensured that the
products were readily available for practical applications in Geographic Information Systems
(GIS) and online visualization platforms. The overall workflow is illustrated in Figure 3,
highlighting the sequential flow from raw input to final geospatial outputs ready for operational
use.

RESULTS AND DISCUSSIONS

The algorithm was tested using multiple FY-3D datasets covering different environmental
conditions, including areas with extensive snow cover and dense cloud formations (Figure 5).
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Figure 6. The FY-3D MERSI true-color RGB composite at 1 km resolution, acquired on 22 October 2024

The generated maps clearly distinguish snow-covered regions (blue) from cloud-
covered areas (white). Snow pixels were successfully detected in high-altitude regions (Figure
6), while clouds were accurately identified over both land and water surfaces. Example outputs
are shown in Figure 5.

Validation was performed using reference data from MODIS Snow Cover products
and ground observations. The overall accuracy achieved was 91%, with a Kappa coefficient of
0.86, indicating high agreement between the classified maps and reference data.
Misclassifications primarily occurred in transition zones where thin clouds overlapped snow or
where melting snow exhibited low reflectance in the visible spectrum.

Compared to MODIS-based algorithms, the proposed method showed similar
performance while benefiting from FY-3D’s higher temporal coverage. The use of open-source
tools enhances reproducibility and integration into operational monitoring systems.

The algorithm has practical applications in:

e Water resource management: Monitoring seasonal snowmelt contributing to river
discharge.

e Disaster risk reduction: Early detection of snow accumulation and potential
avalanche hazards.

e Climate studies: Long-term monitoring of snow cover dynamics in response to
climate change.

CONCLUSIONS

This study demonstrates the successful development of a Python-based algorithm for
detecting snow and clouds using FY-3D MERSI data. By integrating spectral thresholds and
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indices such as NDSI, the method provides accurate classification results while remaining
computationally efficient and adaptable.

The results confirm the potential of FY-3D data for regional and global monitoring
applications. The open-source nature of the implementation ensures reproducibility and
flexibility, enabling integration into existing geospatial workflows.

Future work will focus on incorporating machine learning techniques to improve
discrimination between snow and thin clouds and extending the methodology toward near real -
time operational monitoring.
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