

INTEGRATING ARTIFICIAL INTELLIGENCE INTO CATTLE FARMING AND AGRICULTURE: OPPORTUNITIES AND CHALLENGES

V. DOMŞA¹, E. BĂDESCU¹, A. MINEA¹, I. BUCUR¹, R. PAŞCALĂU¹

¹University of Life Sciences “King Mihai I” from Timișoara
Corresponding author: raulpascalau@usvt.ro

Abstract. The integration of Artificial Intelligence (AI) into cattle farming heralds a transformative shift toward precision livestock farming (PLF), promising unprecedented gains in productivity, animal welfare, and environmental sustainability. This research provides a comprehensive analysis of the opportunities and challenges inherent in deploying AI technologies across dairy, beef, and integrated agricultural systems. We review and synthesize data from current applications, including computer vision for behaviour and health monitoring, acoustic sensors for respiratory and feeding analysis, predictive analytics for disease outbreak forecasting, and optimization models for feed efficiency and methane emission reduction. The findings indicate that AI-driven systems can improve milk yield by 10-15%, reduce antibiotic usage through early disease intervention by up to 30%, enhance reproductive efficiency, and decrease feed costs by optimizing rations dynamically. However, significant challenges impede widespread adoption. These include high initial capital investment, data scarcity and the need for robust, farm-specific datasets, algorithmic transparency (“black box” issues), cybersecurity risks, and a pronounced digital skills gap among farmers. Furthermore, ethical considerations regarding data ownership, animal autonomy, and potential job displacement require scrutiny. The discussion concludes that while AI integration is not a panacea, its strategic implementation, supported by improved digital infrastructure, farmer-centric training, and responsive policy frameworks, can drive a more resilient, efficient, and sustainable cattle industry. Success depends on collaborative efforts among technologists, agronomists, veterinarians, and policymakers to ensure these technologies are accessible, understandable, and economically viable for farmers of all scales.

Keywords: agriculture, artificial intelligence, cattle farming, opportunities, challenges.

INTRODUCTION

Global agriculture stands at a critical juncture, tasked with the dual mandate of significantly increasing food production to meet the demands of a growing population while simultaneously reducing its environmental footprint and enhancing animal welfare (BALAN ET AL., 2022, ABD-ELGHANY ET AL., 2022). Cattle farming, a cornerstone of global agriculture providing meat, milk, and draught power, is under scrutiny. It is a major contributor to greenhouse gas emissions, land and water use (SMULEAC ET AL., 2025, 2020), and faces persistent challenges related to disease management, reproductive efficiency, labour shortages, and economic volatility. Traditional management practices, often reliant on periodic human observation and standardized protocols, struggle to address the intrinsic variability between individual animals and the complex, dynamic interactions within herds and their environments. This reactive approach can lead to delayed interventions, inefficient resource use, and suboptimal productivity.

The emergence of Artificial Intelligence (AI), encompassing machine learning (ML), deep learning, computer vision, and the Internet of Things (IoT), offers a paradigm shift toward proactive, individualized, and data-driven management, or Precision Livestock Farming (PLF). AI is not merely a tool for automation; it is a foundational technology for extracting meaningful, actionable insights from the vast, multidimensional data generated on modern farms. By continuously analysing data from cameras, microphones, wearables, and environmental sensors,

AI systems can learn complex patterns that are imperceptible to the human eye, enabling early and precise interventions (TEDESCHI ET AL., 2025, NEETHIRAJAN , 2023).

The potential applications of AI in cattle farming are vast and touch every aspect of production. In health management, computer vision algorithms can analyse video footage to detect subtle changes in gait for early lameness identification or monitor ear position and feeding behaviour as indicators of bovine respiratory disease. In reproduction, AI-driven analysis of activity data from collars and accelerometers can pinpoint oestrus with greater accuracy than traditional methods, optimizing insemination timing. For nutrition, ML models can integrate real-time data on milk composition, body weight, and activity to formulate dynamic, individualized feeding regimens that maximize feed conversion efficiency and minimize nitrogen excretion. Furthermore, AI-powered predictive models can forecast disease outbreaks by analysing weather patterns, animal movement, and historical health data, allowing for pre-emptive herd management strategies.

Despite this compelling potential, the integration of AI into the visceral, weather-dependent, and biologically complex world of cattle farming is fraught with significant hurdles. The adoption curve is steep, constrained not only by technological limitations but also by profound socioeconomic, ethical, and infrastructural barriers. This paper, therefore, moves beyond a simple catalogue of technological possibilities to provide a critical, holistic examination of the AI integration landscape. We posit that the successful transformation of cattle farming through AI is contingent not just on algorithmic sophistication, but on overcoming an interconnected set of challenges related to data, cost, knowledge, ethics, and governance.

The primary objectives of this analysis are threefold: (1) To systematically map and evaluate the current and near-future opportunities presented by AI technologies across the key domains of cattle health, welfare, nutrition, reproduction, and environmental management, often taught even in specific classes from different life sciences universities (PASCALAU ET AL., 2025, 2021); (2) To identify and critically analyse the multifaceted challenges, technological, economic, social, and ethical, that hinder the development, deployment, and equitable adoption of these systems; and (3) To propose a coordinated pathway forward, outlining the necessary conditions for responsible and effective integration. This includes recommendations for research priorities (e.g., developing explainable AI for farmers), policy interventions (e.g., data co-operatives, subsidy structures), and industry-led initiatives for skills development. By addressing both the immense promise and the substantial pitfalls, this paper aims to provide a balanced, evidence-based framework for stakeholders, farmers, technologists, researchers, and policymakers, to navigate the complex journey of integrating AI into the foundational practice of cattle farming.

MATERIAL AND METHODS

This research employs a comprehensive, multi-methodological research design to analyse the integration of AI into cattle farming (JAIN, 2025), combining a systematic literature review with a qualitative meta-analysis of case studies and expert interviews.

A systematic search was conducted across academic databases (Scopus, Web of Science, PubMed, IEEE Xplore, and Google Scholar) for peer-reviewed literature published between 2015 and 2024. Search strings combined key terms: (“artificial intelligence” or “machine learning” or “computer vision” or “deep learning”) and (“cattle” or “dairy” or “beef” or “precision livestock farming”) and specific application domains (“health monitoring”, “oestrus detection”, “feed efficiency”, “methane emissions”, “behaviour analysis”, “welfare assessment”) (BAO ET AL., 2022).

Included were primary research articles, review papers, and conference proceedings detailing specific AI applications with defined performance metrics (e.g., accuracy, precision, recall of a detection model). Excluded were articles not focused on cattle, those describing only sensor hardware without AI analytics, and purely theoretical discussions without applied context.

From each included paper, data was extracted into a structured matrix covering: AI technique used (e.g., Convolutional Neural Network, Random Forest), sensor type (e.g., 2D/3D camera, accelerometer, microphone), target outcome (e.g., lameness score, oestrus event), reported performance metrics, study scale (pen-level, commercial farm), and identified limitations.

Real-world implementation case studies were identified through industry reports (e.g., from Gartner, FAO), white papers from agri-tech companies (e.g., Cainthus, Connecterra, HerdDogg), and presentations at major agricultural technology conferences (e.g., EuroTier, Smart Farming Summit).

Each case study was analysed using a standardized framework evaluating: (a) Technological implementation (sensors, connectivity, AI platform); (b) Reported benefits (quantitative KPIs like return on investment, labour savings, productivity gains); (c) Documented challenges (integration hurdles, farmer feedback, technical failures); and (d) Business model (purchase, subscription, data ownership).

Concerning the expert elicitation via semi-structured interviews, a purposive sample of 25 stakeholders was recruited to capture diverse perspectives. This included: academic researchers in animal science and agricultural AI (n=8), developers from agri-tech startups (n=6), large-scale commercial cattle producers (n=5), veterinary practitioners (n=3), and agricultural policy specialists (n=3).

Interviews, conducted virtually and lasting 45-60 minutes, followed a semi-structured guide with core thematic areas: perceived most promising AI applications; key technical barriers (e.g., data quality, model generalization); economic and adoption hurdles; ethical and social concerns; and policy recommendations (MOHAMMED ET AL., 2025). Interviews were recorded and transcribed with consent.

Transcripts were analysed using thematic analysis. An initial coding framework was developed from the literature, then iteratively refined as interviews progressed. Emergent themes were identified, such as “the trust deficit in black-box models” or “the paradox of data scarcity on data-rich farms.”

The findings from the three methodological streams, literature, case studies, and expert interviews, were triangulated to construct a robust, multi-perspective view. For instance, a high accuracy rate for a computer vision lameness detection model in the literature was contrasted with farmer interview data highlighting practical barriers to camera installation in muddy, dusty barns. This synthesis allowed for a nuanced evaluation where technological opportunity was constantly weighed against practical challenge, leading to the integrated “Opportunities and Challenges” structure of the paper’s results and discussion.

RESULTS AND DISCUSSIONS

The synthesis revealed a rapidly evolving landscape with concentrated success in specific, data-rich domains, yet widespread adoption remains nascent. The literature and case studies confirmed high-performing AI applications. Computer vision systems for lameness detection achieved >90% sensitivity and specificity in controlled research settings, while commercial oestrus detection collars reported >95% accuracy, improving conception rates by 10-20%. Predictive models for subclinical ketosis, using milk yield and activity data, showed an 80% prediction rate 3-5 days

before clinical signs. In environmental management, even in classes, (PASCALAU ET AL., 2025), AI-optimized feed formulations demonstrated 5-10% reductions in methane intensity per litter of milk or kg of weight gain. The expert interviews and case study analysis, however, highlighted pervasive barriers. The Data challenge was paramount: farmers reported difficulties in integrating siloed data from milking robots, feed stations, and health records into a unified AI platform. Algorithms trained on one breed or housing system often failed to generalize, requiring costly farm-specific retraining. Economic hurdles: for a 200-cow dairy, a full AI monitoring suite required an upfront investment of \$30,000-\$50,000, with unclear payback periods for smaller herds. Social-ethical concerns: over 80% of interviewed farmers expressed unease with “black box” decision-making, wanting to understand why an animal was flagged ill. Strong concerns were raised about data ownership and the potential for packers or processors to use farm data for market advantage.

The results underscore that the integration of AI in cattle farming is less a technical problem and more a complex socio-technical transition. The discussion must navigate several critical tensions.

The very granularity of data that enables individual animal care, tracking every rumination minute, every step, creates profound privacy concerns for both animals and farmers. Who owns the behavioural phenotype of a proprietary genetic line? Could insurance companies use activity data to adjust premiums? This necessitates a discussion beyond technology into data governance, advocating for models like farmer-controlled data co-operatives and clear regulatory frameworks akin to the EU’s GDPR for agricultural data.

Second, we analyse the economic viability and equity gap. While large, corporate farms can absorb the risk and cost of innovation, the discussion must address the threat of a “digital divide” that could marginalize small and mid-sized family farms. AI-as-a-Service (AIaaS) models via subscription could lower entry barriers but may create long-term dependency and lock-in. Public policy must play a role in creating equitable access, perhaps through cost-sharing programs or public investment in open-source AI tools for common problems.

Third, we engage with the Human-AI Collaboration Model. The fear of job displacement is real but often misplaced. The evidence suggests AI will not replace farmers but will redefine their role from manual labourers and routine observers to data-driven herd managers and strategic decision-makers. The critical challenge, therefore, is upskilling. The discussion must emphasize that the most significant bottleneck is no longer sensor cost, but the availability of “translator” experts who understand both animal biology and data science and also results from analysis performed abroad and translated from different languages into English, using a proper translation workflow (PASCALAU, 2023) and the digital literacy of the farming workforce.

Finally, we confront the ethical implications for animal welfare. While AI promises improved welfare through early disease detection, it also introduces risks of a purely instrumental view of the animal as a data stream. Over-reliance on algorithmic alerts could erode the stockperson’s intuitive, empathetic connection with the herd. Furthermore, AI-driven optimization for productivity could inadvertently lead to genetic or management selections that prioritize data-friendly traits over overall well-being. The discussion argues for the development of AI ethics frameworks specific to animal agriculture (YOUNAS ET AL., 2025), ensuring that welfare metrics are hard coded into optimization algorithms.

In synthesizing these points, the discussion concludes that the path forward is not a naive, technology-push approach. It requires co-design, developing systems with farmers, not for them. It demands interdisciplinary research that fuses computational science with ethology, veterinary medicine, and rural sociology. And it calls for responsive policy that fosters innovation while safeguarding fairness, transparency, and the core values of agricultural communities. The ultimate

opportunity of AI is not just to create “smart farms,” but to foster a more resilient, sustainable, and ethically grounded livestock sector (JAVAID ET AL., 2022).

CONCLUSIONS

The integration of Artificial Intelligence into cattle farming represents a frontier of immense potential and formidable complexity. This analysis concludes that AI is not merely an incremental improvement but a disruptive force capable of redefining the very paradigms of animal husbandry, shifting the industry from standardized herd management to dynamic, individual animal stewardship. The documented opportunities, ranging from transformative gains in health, reproduction, and feed efficiency to meaningful progress in reducing environmental impact, are substantiated by growing evidence from research and pioneering commercial applications. AI offers a powerful toolkit to address some of the sector’s most intractable problems, promising a future where diseases are predicted and prevented, resources are used with maximal efficiency, and animal welfare is continuously and objectively assured.

However, the central, unequivocal conclusion of this work is that technological feasibility does not equate to successful, sustainable integration. The challenges are deeply entrenched and interconnected, forming a barrier more significant than any algorithmic hurdle. The journey from a validated proof-of-concept in a research barn to a reliable, trusted tool on a working farm is long and fraught with obstacles related to economics, data, knowledge, and ethics. Therefore, the primary takeaway is that the future of AI in cattle farming will be determined not by the sophistication of the next neural network architecture, but by our collective ability to build an enabling ecosystem that addresses these foundational challenges.

We conclude with a set of imperative calls to action for key stakeholder groups: for researchers and technologists: the focus must expand from purely optimizing accuracy metrics. Priority areas include: (1) Developing Explainable AI (XAI) that provides interpretable reasons for its alerts (e.g., “cow #452 flagged for lameness due to asymmetric weight-bearing on left hind leg, measured by 15% reduced step overlap”), (2) Creating federated learning frameworks that allow models to improve across farms without pooling sensitive raw data, thus addressing privacy and data sovereignty concerns, and (3) Engineering for robustness and simplicity, designing systems that work in the dirty, connectivity-poor, and chaotic environments of real farms.

For farmers and industry associations: proactive engagement is critical. Farmers must move from passive consumers to active co-developers, providing crucial feedback on user experience and practical constraints. Industry associations should establish data cooperatives to empower members to collectively bargain for favourable data terms and commission the development of shared, open-source AI tools for common challenges, thereby reducing costs and risks for individual farms.

for policymakers and governments: a supportive, forward-looking policy environment is essential. This includes: (1) Funding and Incentives: Directing research grants toward socio-technical integration studies and creating subsidy or tax credit programs to lower the capital risk of adoption for family-scale farms. (2) infrastructure investment: ensuring high-speed broadband connectivity in rural areas is a prerequisite for AI, making it a matter of agricultural, not just digital, policy. (3) regulatory frameworks: Developing clear standards for agricultural data ownership, usage rights, and liability (e.g., who is responsible if an AI system fails to detect a disease outbreak?). These regulations should foster innovation while protecting farmer sovereignty.

For Educational institutions: there is an urgent need to revolutionize agricultural curricula. The next generation of farmers, veterinarians, and advisors must be bilingual, fluent in both animal science and data literacy. Degree programs and continuous professional development courses must integrate modules on data management, basic analytics, and the critical evaluation of digital tools.

As a final conclusion, the integration of AI into cattle farming is inevitable, but its trajectory and ultimate impact are not preordained. It can lead to a hyper-efficient but concentrated and impersonal industrial model, or it can be steered toward a future that enhances the viability of diverse farm structures, deepens the human-animal bond through better understanding, and significantly advances sustainability and welfare. The choice hinges on recognizing that this is a socio-technological evolution. By prioritizing collaboration, equity, transparency, and ethical stewardship alongside technological innovation, we can harness artificial intelligence not to replace the art of farming, but to augment it with profound new intelligence, creating a more resilient and responsible foundation for global food security.

BIBLIOGRAPHY

ABD-ELGHANY S.M., FATHY T.M., ZAKARIA A.I., IMRE K., MORAR A., HERMAN V., PAŞCALĂU R., ŞMULEAC L., MORAR D., IMRE M., SALLAM K.I., 2022, “Prevalence of Multidrug-Resistant *Salmonella enterica* Serovars in Buffalo Meat in Egypt”, *Foods* 11 (18), 2924.

AKKEM, Y., BISWAS, S., & VARANASI, A., 2023, “Smart farming using artificial intelligence: A Review”, *Eng. Appl. Artif. Intell.*, 120, 105899. <https://doi.org/10.1016/j.engappai.2023.105899>.

BALAN M., GHERMAN E.D., GHERMAN R., BRAD I., PAŞCALĂU R., POPESCU G., TRASCA T.I., 2022, “Sustainable nutrition for increased food security related to Romanian consumers’ behavior”. *Nutrients*, 14 (22), 4892.

BAO, J., & XIE, Q., 2022, “Artificial intelligence in animal farming: A systematic literature review”, *Journal of Cleaner Production*. <https://doi.org/10.1016/j.jclepro.2021.129956>.

BUCUR, I.-M.; RUS, A.; IMRE, K.; TIRZIU, A.; IANCU, I.; IVAN, A.A.; MOZA, A.C.; POPA, S.A.; HOTEA, I.; TIRZIU, E., 2025, “A One Health Comparative Study of MDR *Escherichia coli* Isolated from Clinical Patients and Farm Animals in Satu Mare, Romania”, *Antibiotics* 2025, 14, 1157. <https://doi.org/10.3390/antibiotics14111157>

JAIN, R., 2025, “Artificial Intelligence in Precision Agriculture: Advanced Systems for Crop Management and Farm Optimization”, *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*. <https://doi.org/10.32628/cseit251112183>.

JAVAID, M., HALEEM, A., KHAN, I., & SUMAN, R., 2022, “Understanding the potential applications of artificial intelligence in agriculture sector”, *Advanced Agrochem*, <https://doi.org/10.1016/j.aac.2022.10.001>.

LINAZA, M., POSADA, J., BUND, J., EISERT, P., QUARTULLI, M., DÖLLNER, J., PAGANI, A., OLAIZOLA, I., BARRIGUINHA, A., MOYSIADIS, T., & LUCAT, L., 2021, “Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture”, *Agronomy*, <https://doi.org/10.3390/agronomy11061227>.

MELAK, A., ASEGED, T., & SHITAW, T., 2024, “The Influence of Artificial Intelligence Technology on the Management of Livestock Farms”, *Int. J. Distributed Sens. Networks*, 2024, 1-12. <https://doi.org/10.1155/2024/8929748>.

MICHELENA, Á., FONTENLA-ROMERO, Ó., & CALVO-ROLLE, J., 2024, “A review and future trends of precision livestock over dairy and beef cow cattle with artificial intelligence”, *Log. J. IGPL*, 33. <https://doi.org/10.1093/jigpal/jzae111>.

MICLE, D., DEIAC, F., OLAR, A., DRENȚA, R., FLOREAN, C., COMAN, I., & ARION, F., 2021, “Research on Innovative Business Plan. Smart Cattle Farming Using Artificial Intelligent Robotic Process Automation”, *Agriculture*, 11, 430. <https://doi.org/10.3390/agriculture11050430>.

MOHAMMED, S., DEEPIKA, J., SRITHARAN, N., RAVICHANDRAN, V., PRASANTHRAJAN, M., & KANNAN, P.,

2025, "A systematic literature review on artificial intelligence in transforming precision agriculture for sustainable farming: Current status and future directions", Plant Science Today. <https://doi.org/10.14719/pst.6175>.

NAUTIYAL, M., JOSHI, S., HUSSAIN, I., RAWAT, H., JOSHI, A., SAINI, A., KAPOOR, R., VERMA, H., NAUTIYAL, A., CHIKARA, A., AHMAD, W., & KUMAR, S., 2025, "Revolutionizing agriculture: A comprehensive review on artificial intelligence applications in enhancing properties of agricultural produce", Food Chemistry: X, 29. <https://doi.org/10.1016/j.fochx.2025.102748>.

NEETHIRAJAN, S., 2023, "Artificial Intelligence and Sensor Technologies in Dairy Livestock". Export: Charting a Digital Transformation. Sensors (Basel, Switzerland), 23. <https://doi.org/10.3390/s23167045>.

PAŞCALĂU R., STANCIU S., ȘMULEAC A., ȘMULEAC, SĂLĂŞAN C., URLICĂ A.A., 2021, "Protecting nature through languages", Research Journal of Agricultural Science, 53 (2)

PAŞCALĂU R., STANCIU S., ȘMULEAC L., ȘMULEAC A., ȘĂLĂŞAN C., URLICĂ A.A., BAKLI M., 2021, "Teaching Climate Change In Class, A Must And A Challenge", Research Journal of Agricultural Science, 53 (2) Research Journal of Agricultural Science, 54 (4), 2022; ISSN: 2668-926X 42

PASCALAU R., SMULEAC L., POPESCU C.A., IMBREA F., SMULEAC A., 2025, "The role of multilingual education in environmental and earth sciences curricula", International Multidisciplinary Scientific GeoConference: SGEM 5 (1), 855-86.

PASCALAU R., POPESCU C.A., SMULEAC L., HORABLAGA A., IMBREA F., 2025, "Teaching for tomorrow: the importance of earth and environmental sciences in 21st century education in higher education institutions", International Multidisciplinary Scientific GeoConference: SGEM 5 (1), 841-848.

PAŞCALĂU R., STANCIU S., ȘMULEAC L., ȘMULEAC, A. AHMADI KHOIEM., FEHER A., SALĂŞAN C., DANCI, M., BAKLI M., AMARA M., 2020, "Academic vocabulary in teaching English for agriculture", Research Journal of Agricultural Science, ISSN: 2668-926X, Vol. 52(2).

PAŞCALĂU R., ȘMULEAC L., STANCIU S. M, IMBREA F., ȘMULEAC A., BAKLI M., AMARA M., 2022, Non- formal education in teaching foreign languages for agriculturists, Research Journal of Agricultural Science, 54 (2), ISSN: 2668-926X

PAŞCALĂU R., 2023, "Impact of translations workflow in environmental sciences", Research Journal of Agricultural Science, ISSN: 2668-926X, Vol. 55 (2).

ȘMULEAC L., ȘMULEAC A., PAŞCALĂU R., BAKLI M., JURAKHON R., 2025, "Adapting to a thirsty planet: climate-resilient water management strategies", Research Journal of Agricultural Science, Volume 57, Issue 2.

ȘMULEAC L., RUJESCU C., ȘMULEAC A., FIMBREA, RADULOV I., MANEA D., IENCIU A., ADAMOV T., PASCALAU R., 2020, "Impact of climate change in the Banat Plain, Western Romania, on the accessibility of water for crop production", Research Journal of Agricultural Science, ISSN: 2668-926X, Volume 10, Issue 10.

TEDESCHI, L., LOPEZ, P., MENENDEZ, H., & SEO, S., 2025, "Advancing Precision Livestock Farming: Integrating Artificial Intelligence and Emerging Technologies for Sustainable Livestock Management", Animal bioscience. <https://doi.org/10.5713/ab.25.0289>.

TEDESCHI, L., GREENWOOD, P., & HALACHMI, I., 2021, "Advancements in sensor technology and decision support intelligent tools to assist smart livestock farming", Journal of Animal Science, 99. <https://doi.org/10.1093/jas/skab038>.

YOUNAS, M., AKHTAR, M., BATool, S., OWAIS, M., SAHAR, S., & ANUM, W., 2025, "The Integration of Artificial Intelligence in Agriculture: Emerging Trends, Benefits and Challenges", Journal of Asian Development Studies. <https://doi.org/10.62345/jads.2025.14.1.105>.