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 Abstract. Unmanned aerial vehicles (UAVs) have become important tools in modern geospatial 

data acquisition, enabling rapid and high-resolution mapping of urban and rural environments. This 

paper investigates the efficiency of UAV-based photogrammetry and Python based workflows for 

extracting building footprints in areas with high buildings density. The primary objective is to assess how 

using Python based algorithms in data processing influences efficiency and precision in deliverables in 

comparison to human operators. Despite the maturity of UAV photogrammetric techniques, the extraction 

of vector features from derived datasets remains a bottleneck in urban mapping workflows. This research 

focuses on optimizing the feature extraction stage, particularly building footprint vectorization, by 

integrating Python-based automation into the workflow. The proposed approach streamlines the 

transition from processed photogrammetric datasets to structured geospatial outputs, reducing labor and 

costs. This study introduces an innovative approach by integrating photogrammetric data with automated 

Python-based feature extraction algorithms, providing a reproducible and scalable solution for urban 

and rural mapping. Results demonstrate that automated workflows can significantly reduce processing 

time while maintaining comparable accuracy to manual vectorization. The deliverables generated 

through this workflow, especially updated orthophoto plans, can be directly used by local authorities for 

a wide range of applications including urban planning, infrastructure management, cadastral updates 

and tax collection. The study highlights the importance of maintaining up-to-date geospatial data for 

informed decision-making and efficient governance. 

 

Keywords: UAV Photogrammetry, Building Extraction, Python, Urban Mapping, GIS, 

  

INTRODUCTION 

Surveying buildings is one of the most labour intensive and expensive tasks in 

suveying and mapping. The complexity arises from the need to coduct measurements on 

private property and the technical challanges that buildings impose such as loss of GNSS 

positioning accuracy in proximity to buildings (WuDunn & Zakhor, 2021). Recent advances in 

technology such as tilt compensated GNSS receivers, integrated laser measument systems and 

photogrammetric based distance estimation tools tried to solve the issue, the process remains 

time cosuming  and cumbersome to execute in the field (Andaru et al., 2024). The use of 

unmanned aerial vehicles (UAVs) is a viable and efficient method for data acquisition, offering 

an alternative to traditional surveying (ZHOU ET AL., 2022). UAVs enable rapid coverage of 

complex or inaccessible areas without the logistical constraints associated with entering private 

properties. Among UAV-based technologies, LiDAR and photogrammetry are the two primary 

approaches for data collection. LiDAR systems provide highly accurate and detailed point 

clouds with consistent geometric reliability, making them particularly suitable for feature 

extraction (LIU ET AL., 2025) . However, the high cost of LiDAR sensors and data acquisition 

limits their widespread use in large-scale projects. In contrast, UAV photogrammetry offers a 

cost effective solution, capable of producing 3D reconstructions from overlapping images 

(SADEQ ET AL., 2024). Despite its lower geometric precision and sensitivity to lighting and 
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texture conditions, photogrammetric data remain sufficiently accurate for a wide range of 

mapping applications (Ji et al., 2024). This study will evaluate whether the photogrammetric 

approach can produce satisfactory results. By assessing multiple factors this study aims to 

contribute to the development of scalable, reproducible and reliable method for building 

footprint extraction. 

 

MATERIAL AND METHODS 

A UAV photogrammetric survey was conducted using a DJI Mavic 3 Enterprise that 

captured nadir and oblique images(at 30°) with a 80% farward overlap and 80% side overlap at 

an altitude of 100m. Data collected this way ensured comprehensive coverage of building 

facades and roofs, improving 3D reconstruction (ZHOU ET AL., 2022). 

Ground control points were surveyed using a GNSS receiver ensuring accurate 

georeferencing. The images were processed in Agisoft Metashape to produce a dense point 

cloud and an orthofotoplan (WUDUNN & ZAKHOR, 2021). 

The colored point cloud was classified in several classes: ground, vegetation, noise 

and buildings. Ground extraction was done using the Cloth Simulation Filter (CSF), which 

simulates a virtual cloth that drapes over the inverted point cloud (ZHANG ET AL., 2016). 

Figure 1. Representation of CSF 
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As described by (ZHANG ET AL., 2016), the CSF algorithm iteratively relaxes a 

simulated cloth mesh over the inverted point cloud until it conforms to the terrain surface, 

separating ground and non ground points based on height differences and geometric 

smoothness. The algorithm’s performance is governed by several key parameters, including 

cloth resolution, maximum iteration count, and rigidity coefficient, which control the level of 

surface detail the simulated cloth can capture. Once the simulation reaches the end, the cloth’s 

final surface is treated as the estimated Digital Terrain Model (DTM), and all points located 

above a specified threshold are classified as non-ground points. 

 

  
Figure 2. Classified ground points sample Figure 3. DEM Sample 

 

This physically inspired approach enables the CSF to perform robustly across diverse 

landscapes without requiring prior knowledge of the terrain morphology, making it especially 

valuable for photogrammetric point cloud classification (LIU ET AL., 2025). After the ground 

points were extracted, the remaining point cloud consisted primarily of above-ground features 

such as buildings, vegetation, and noise. 

 

Figure 4. Point cloud sample with the ground points filtered out 
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To further refine the dataset, vegetation classification was performed based  

characteristics derived from the RGB imagery associated with each point. The point colors 

were converted to the HSV (Hue, Saturation, Value) color space, which provides a more 

perceptually uniform representation of color compared to the standard RGB model (JI ET AL., 

2024). In this space, vegetation typically exhibits a Hue range between 90° and 180°, 

corresponding to various shades of green, with Saturation and Value values between 0 and 100, 

depending on vegetation type, density, and illumination conditions. Points falling within this 

spectral range were classified as vegetation, effectively separating them from artificial surfaces 

such as roofs or walls, which tend to display different color signatures. 

After vegetation classification, the remaning subset was subjected to additional spatial 

filtering and noise reduction. Small, isolated point clusters, often caused by reconstruction 

artifacts or mismatched features in the photogrammetric process, were identified and removed 

using density-based clustering and distance thresholds. Point clusters with less then 50 

points/0.5 m2 were classified as noise (LI ET AL., 2023). As a result, the refined point cloud 

predominantly contained building structures, with minimal interference from vegetation or 

noise. This clean dataset served as a reliable foundation for subsequent stages of analysis, 

including roof segmentation and building footprint extraction. 

After the classification is complete, two raster models were generated: 

 DTM (Digital terrain model) interpolated from the points in the ground class; 

 DEM (Digital elevation model) interpolated from both ground and building points; 

Both model were created at a resolution of  7.7cm/pixel and they form the core input 

for the extraction algorithm. 

The proposed workflow starts with the computation of the normalized Digital Surface 

Model (nDSM), derived as the difference between the Digital Elevation Model (DEM)—which 

includes both terrain and above-ground objects—and the Digital Terrain Model (DTM)—

which represents only the bare ground surface (Sadeq et al., 2024). Mathematically, this 

relationship can be expressed as: 

Figure 5. Point cloud after vegetation filter - side 

view 

Figure 2. Point cloud after vegetation filter - 

top view 

Figure 6. Cleaned point cloud containing buildings class 
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nDSM = DEM – DTM 

 

The resulting nDSM quantifies the relative elevation of surface features above ground 

level, effectively isolating the vertical component associated with buildings. This height-

normalized raster serves as the foundation for distinguishing built-up features from terrain. 

The next stage involves height thresholding, a process that only retains pixels above a 

minimum elevation above the ground by using  cv2.threshold() function from the openCV 

library to apply a binary threshhold to the raster (in this case all pixels with an elevation >2.5m 

are atributed the value 1 and the other pixels become 0) (LIU ET AL., 2025). This threshold can 

be adjusted depending on the characteristics of the study area and the expected building 

heights. For this study the chosen value 2.5m so that smaller buildings are not overlooked. 

After thresholding, the binary raster representing potential building regions often 

contains imperfections, including small gaps, spurious artifacts, and irregular boundaries. To 

address some of these issues, the workflow employs morphological filtering operations, 

specifically opening and closing (LI ET AL., 2023). 

 The opening operation performs an erosion followed by a dilation, effectively 

removing small noise patches and refining the edges of building regions using thr 

cv2.MORPH_OPEN function. 

 The closing operation performs a dilation followed by an erosion, thereby filling 

small voids or gaps within individual buildings and bridging discontinuities between closely 

adjacent segments of the same building using the cv2.MORPH_CLOSE function. 

An additional GAP parameter is introduced to control the merging of nearby building 

segments that belong to a single structure but may appear disconnected due to 

photogrammetric or rasterization artifacts. This parameter defines a maximum allowable 

separation distance for merging, ensuring more continuous and geometrically coherent 

footprints. 

Once the morphological refinement is complete, the resulting binary roof mask is 

converted from raster to vector format through polygonization using OpenCV and GDAL 

libraries. This step transforms contiguous pixel clusters into vector polygons using the 

cv2.findContours() function to detect continuous boundaries in the binary mask and the  

cv2.approxPolyDP() to simplify each contour by reducing vertex density while mentaining 

overall shape (Andaru et al., 2024). The GDAL library is used to transform detected contours 

into vector polygons, simplifying and saving them as a shapefile. 

 

RESULTS AND DISCUSSIONS 

The proposed workflow successfully generated building footprints with varying 

fidelity. In the cases where the buildings were isolated and there was no vegetation the output 

was similar to the shape that was manually drawn. 

In areas where vegetation was present, the fidelity of the extracted building footprints 

was noticeably reduced, a result that aligns with expectations given the characteristics of the 

input data (JI ET AL., 2024). The irregular geometry and variable height of vegetation introduce 

local distortions in the surface models derived from photogrammetric reconstruction, leading to 

inconsistencies along roof boundaries and partial occlusion of building features (SADEQ ET AL., 

2024). 
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Figure 7. High fidelity outputs, yellow – manually drawn, blue - generated 

 
Figure 8. Output affected by vegetation, yellow – manually drawn, blue – generated 

The algorithm performed the worst in cases where building density was high. The 

predominant source of error was the merging of adjacent buildings into a single polygon, 

resulting in the under-segmentation of individual structures (LIU ET AL., 2025). This limitation 

is most likely attributed to the inherent constraints of the photogrammetric data acquisition 
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process, where, narrow gaps between buildings are difficult to reconstruct reliably from aerial 

imagery (ZHOU ET AL., 2022). 
Occlusions, limited image overlap, and unfavorable viewing angles reduce the point 

density and geometric accuracy in these inter-building spaces, leading to ambiguous elevation 

values in the derived surface models and, consequently, to segmentation errors during footprint 

extraction. 

Figure 9. Errors in ouput data, yellow – manually drawn, blue - generated 

 

The results were assesed by comparing the areas of manually digitized buildings with 

those of the generated polygons. This comparison enabled evaluation of geometric consistency 

of the extraction process, relative to human interpretation. The results are presented in the 

following table: 
Table 1 

Area analysis of building shapes 
ID Area1 [m2] Area2 [m2] Δ Area[m2] Δ Area[%] Obserervations 

1 2.420 0.000 2.420 100 Area corectly filtered out < 20 m2 

2 3.003 0.000 3.003 100 Area corectly filtered out < 20 m2 

3 3.156 0.000 3.156 100 Area corectly filtered out < 20 m2 

4 3.197 0.000 3.197 100 Area corectly filtered out < 20 m2 

5 4.086 0.000 4.086 100 Area corectly filtered out < 20 m2 

6 4.093 0.000 4.093 100 Area corectly filtered out < 20 m2 

7 4.386 0.000 4.386 100 Area corectly filtered out < 20 m2 

8 4.460 0.000 4.460 100 Area corectly filtered out < 20 m2 

9 4.474 0.000 4.474 100 Area corectly filtered out < 20 m2 

10 4.701 0.000 4.701 100 Area corectly filtered out < 20 m2 

11 4.751 0.000 4.751 100 Area corectly filtered out < 20 m2 

12 4.842 0.000 4.842 100 Area corectly filtered out < 20 m2 

13 4.955 0.000 4.955 100 Area corectly filtered out < 20 m2 

14 5.450 0.000 5.450 100 Area corectly filtered out < 20 m2 
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15 5.478 0.000 5.478 100 Area corectly filtered out < 20 m2 

16 5.749 0.000 5.749 100 Area corectly filtered out < 20 m2 

17 6.298 0.000 6.298 100 Area corectly filtered out < 20 m2 

18 6.311 0.000 6.311 100 Area corectly filtered out < 20 m2 

19 7.217 0.000 7.217 100 Area corectly filtered out < 20 m2 

20 7.292 0.000 7.292 100 Area corectly filtered out < 20 m2 

21 7.403 0.000 7.403 100 Area corectly filtered out < 20 m2 

22 8.096 0.000 8.096 100 Area corectly filtered out < 20 m2 

23 8.450 0.000 8.450 100 Area corectly filtered out < 20 m2 

24 10.396 0.000 10.396 100 Area corectly filtered out < 20 m2 

25 10.543 0.000 10.543 100 Area corectly filtered out < 20 m2 

26 11.009 0.000 11.009 100 Area corectly filtered out < 20 m2 

27 11.197 0.000 11.197 100 Area corectly filtered out < 20 m2 

28 12.140 0.000 12.140 100 Area corectly filtered out < 20 m2 

29 13.358 0.000 13.358 100 Area corectly filtered out < 20 m2 

30 13.853 0.000 13.853 100 Area corectly filtered out < 20 m2 

31 14.715 0.000 14.715 100 Area corectly filtered out < 20 m2 

32 14.818 0.000 14.818 100 Area corectly filtered out < 20 m2 

33 16.583 0.000 16.583 100 Area corectly filtered out < 20 m2 

34 17.299 0.000 17.299 100 Area corectly filtered out < 20 m2 

35 18.280 0.000 18.280 100 Area corectly filtered out < 20 m2 

36 18.505 0.000 18.505 100 Area corectly filtered out < 20 m2 

37 18.563 0.000 18.563 100 Area corectly filtered out < 20 m2 

38 18.666 0.000 18.666 100 Area corectly filtered out < 20 m2 

39 21.640 0.000 21.640 100 Area incorectly filtered out > 20 m2 

40 22.527 0.000 22.527 100 Area incorectly filtered out > 20 m2 

41 23.954 0.000 23.954 100 Area incorectly filtered out > 20 m2 

42 24.121 0.000 24.121 100 Area incorectly filtered out > 20 m2 

43 26.804 0.000 26.804 100 Area incorectly filtered out > 20 m2 

44 30.107 0.000 30.107 100 Area incorectly filtered out > 20 m2 

45 30.645 0.000 30.645 100 Area incorectly filtered out > 20 m2 

46 33.708 0.000 33.708 100 Area incorectly filtered out > 20 m2 

47 37.647 0.000 37.647 100 Area incorectly filtered out > 20 m2 

48 37.691 0.000 37.691 100 Area incorectly filtered out > 20 m2 

49 38.618 0.000 38.618 100 Area incorectly filtered out > 20 m2 

50 40.832 0.000 40.832 100 Area incorectly filtered out > 20 m2 

51 42.959 0.000 42.959 100 Area incorectly filtered out > 20 m2 
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52 46.141 0.000 46.141 100 Area incorectly filtered out > 20 m2 

53 57.931 0.000 57.931 100 Area incorectly filtered out > 20 m2 

54 24.640 22.324 2.316 9.4 Area within desired threshold of + 10% 

55 42.530 26.817 15.713 36.9 Area difference out of  the desired threshold of + 10% 

56 40.592 31.681 8.911 22.0 Area difference out of  the desired threshold of + 10% 

57 43.099 31.812 11.287 26.2 Area difference out of  the desired threshold of + 10% 

58 34.756 35.822 -1.066 -3.1 Area within desired threshold of + 10% 

59 50.803 42.433 2.316 4.6 Area within desired threshold of + 10% 

60 2.011 43.432 

2.191 4.8 

Area within desired threshold of + 10% 

Failed element separation 61 43.612 

62 49.747 43.900 5.846 11.8 Area difference out of  the desired threshold of + 10% 

63 58.897 47.370 11.527 19.6 Area difference out of  the desired threshold of + 10% 

64 57.668 49.645 8.023 13.9 Area difference out of  the desired threshold of + 10% 

65 45.899 52.486 -6.587 -14.4 Area difference out of  the desired threshold of + 10% 

66 65.585 57.724 7.861 12.0 Area difference out of  the desired threshold of + 10% 

67 68.354 58.094 10.260 15.0 Area difference out of  the desired threshold of + 10% 

68 75.024 59.695 15.329 20.4 Area difference out of  the desired threshold of + 10% 

69 66.317 72.622 -6.306 -9.5 Area within desired threshold of + 10% 

70 59.019 78.553 -19.534 -33.1 Area difference out of  the desired threshold of + 10% 

71 81.538 79.425 2.114 2.6 Area within desired threshold of + 10% 

72 101.685 90.350 11.336 11.1 Area difference out of  the desired threshold of + 10% 

73 80.225 90.608 -10.383 -12.9 Area difference out of  the desired threshold of + 10% 

74 8.740  

 

96.976 
-6.606 -7.3 

Area within desired threshold of + 10% 

Failed element separation 75 81.630 

76 7.752  
 

97.951 
-5.282 -5.7 

Area within desired threshold of + 10% 

Failed element separation 77 84.917 

78 88.355 100.059 -11.704 -13.2 Area difference out of  the desired threshold of + 10% 

79 86.473  

102.432 
79.489 

 43.7 

Area difference out of  the desired threshold of + 10% 

Failed element separation 80 95.448 

81 37.519  

104.319 
-8.539 

 -8.9 

Area within desired threshold of + 10% 

Failed element separation 82 58.261 

83 122.333 107.810 14.523 11.9 Area difference out of  the desired threshold of + 10% 

84 104.327 110.377 

-6.050 

-5.8 Area within desired threshold of + 10% 

Failed element separation 

85 95.706 111.899 -16.193 -16.9 Area difference out of  the desired threshold of + 10% 

86 154.338 121.773 32.615 21.1 Area difference out of  the desired threshold of + 10% 

87 53.237  3.853 2.9 Area within desired threshold of + 10% 
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88 79.224 128.608 Failed element separation 

89 110.960 135.581 -24.621 -22.2 Area difference out of  the desired threshold of + 10% 

90 92.703 140.174 -47.471 -51.2 Area difference out of  the desired threshold of + 10% 

91 25.162  

143.449 
-24.414 -20.5 

Area difference out of  the desired threshold of + 10% 

Failed element separation 92 93.873 

93 138.739 148.900 -10.161 -7.3 Area within desired threshold of + 10% 

94 53.318  

151.856 
-8.755 -6.1 

Area within desired threshold of + 10% 

Failed element separation 95 89.783 

96 70.425  

157.956 
14.340 8.3 

Area within desired threshold of + 10% 

Failed element separation 97 101.871 

98 37.646  

176.042 
-7.474 -4.4 

Area within desired threshold of + 10% 

Failed element separation 99 130.922 

100 77.255  
193.165 

23.223 10.7 

Area difference out of  the desired threshold of + 10% 

Failed element separation 101 139.133 

102 43.184  

206.040 
-8.472 -4.3 

Area within desired threshold of + 10% 

Failed element separation 103 154.384 

104 85.713  

208.838 
-0.162 -0.1 

Area within desired threshold of + 10% 

Failed element separation 105 122.963 

106 37.858  

219.043 
-18.544 -9.2 

Area within desired threshold of + 10% 

107 162.641 

108 115.546  

232.043 
31.667 12.0 

Area difference out of  the desired threshold of + 10% 

Failed element separation 109 148.164 

110 16.472  

237.366 

-24.739 -11.6 

Area difference out of  the desired threshold of + 10% 

Failed element separation 111 98.074 

112 98.081 

113 185.007 237.712 -52.705 -28.5 Area difference out of  the desired threshold of + 10% 

114 72.044  

238.244 
-29.397 -14.1 

Area difference out of  the desired threshold of + 10% 

Failed element separation 115 136.803 

116 223.039 253.243 -30.204 -13.5 Area difference out of  the desired threshold of + 10% 

117 186.113 253.565 -67.452 -36.2 Area difference out of  the desired threshold of + 10% 

118 11.489  
310.219 

-42.651 -15.9 

Area difference out of  the desired threshold of + 10% 

Failed element separation 119 256.079 

120 178.627 324.067 -145.44 -81.4 Area difference out of  the desired threshold of + 10% 

121 23.650  

339.858 
 

0.592 0.2 

Area within desired threshold of + 10% 

Failed element separation 122 74.012 

123 242.788 

124 349.722 368.708 -18.986 -5.4 Area within desired threshold of + 10% 
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125 172.258 385.071 5.018 

 1.3 

Area within desired threshold of + 10% 

Failed element separation 126 217.831 

127 388.223 391.476 -3.253 -0.8 Area within desired threshold of + 10% 

128 13.021  

 

 
 

 

404.336 -80.299 -24.8 

Area difference out of  the desired threshold of + 10% 

Failed element separation 129 43.297 

130 68.316 

131 199.403 

132 13.189  

 
 

 

 
 

411.323 

 

 

-72.072 

 

 

-21.2 

Area difference out of  the desired threshold of + 10% 

Failed element separation 133 44.927 

134 74.284 

135 75.334 

136 131.517 

137 115.605  
433.410 

-62.666 -16.9 

Area difference out of  the desired threshold of + 10% 

Failed element separation 138 255.139 

139 28.954  

 
 

 

 
 

549.353 -90.656 

 

-19.8 

Area difference out of  the desired threshold of + 10% 

Failed element separation 140 77.312 

141 91.340 

142 101.759 

143 159.332 

 

The analysis presented in Table 1 provides an evaluation of the performance of the 

building extraction algorithm (Area2) relative to manually digitized reference data(Area 1).  

The table also includes observations describing wheather the extracted footprint met the 

required criteria or exhibited speciffic issues, such as incorrect filtering or failed feature 

separation. 

The results indicate that from the initial data set of 143 buildings, 100% of buildings 

with areas <20m2 were filtered out. From total number of buildings 15, representing 10.49% of 

total were wrongly filtered out. This indicates that the filtering stage is overly restrictive in 

certain contexts,  or there is insufficient differentiation between small buildings and adjacent 

structures. 

When analyzing feature segmentation we observe that 57 buildings, representing 

39.86% of the total data set, failed this step resulting in only 25 polygons. 

Looking at the Δ Area values we observe that only 37 out of the 143, representing 

25.87% of shapes fall within the area difference threshold of + 10%. 

These results align with findings from recent studies emphasizing the difficulty of 

footprint delineation in dense or vegetated areas using photogrammetry alone (WuDunn & 

Zakhor, 2021; Andaru et al., 2024). They suggest that integrating cadastral boundaries, 

adaptive thresholds, or machine-learning segmentation models (Li et al., 2023; Mohamed et al., 

2022) could significantly enhance feature differentiation and footprint accuracy. 
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CONCLUSIONS 

The workflow evaluated by this study revealed important limitations: 100% of sub 20 

m² objects were correctly discarded, yet 15 buildings (10.49%) above this threshold were 

wrongly filtered out. 57 buildings (39.86%) failed the segmentation step due to under-

segmentation/merging, and only 37 of 143 footprints (25.87%) met the ±10% area-difference 

criterion. These outcomes indicate that, while UAV photogrammetry is a viable, cost-effective 

data source for footprint extraction, the current parameterization and separation logic are not 

sufficiently robust. 

The main sources of error were consistent with the characteristics of image-based 3D 

reconstruction: reduced fidelity in vegetated areas and ambiguous geometry in narrow inter-

building gaps led to merged roofs and over-aggressive filtering. Addressing these weaknesses 

will require both data and algorithmic refinements.  

On the data side, strengthening acquisition with increased oblique coverage and cross-

track overlap to better resolve facades and alleys and fusing auxillary constraints such as 

cadastral parcel boundaries to limit cross-parcel merges.  

On the algorithmic side, promising directions include adaptive, context-aware 

thresholds tied to local height statistics, instance-level separation using distance-transform 

watershed or graph-based splitting on the binary roof mask. 

While LiDAR remains superior for automation and structural precision, UAV 

photogrammetry provides a cost-effective alternative suitable for municipal-scale applications. 

Future improvements should focus on integrating contextual information, such as cadastral 

parcel data and adaptive morphological parameters, to reduce over-filtering and enhance roof 

separation. Incorporating deep learning approaches for object detection and feature 

segmentation may further improve consistency and scalability, moving UAV photogrammetry 

closer to the automation performance traditionally associated with LiDAR-based workflows. 
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