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Abstract. Unmanned aerial vehicles (UAVs) have become important tools in modern geospatial
data acquisition, enabling rapid and high-resolution mapping of urban and rural environments. This
paper investigates the efficiency of UAV-based photogrammetry and Python based workflows for
extracting building footprints in areas with high buildings density. The primary objective is to assess how
using Python based algorithms in data processing influences efficiency and precision in deliverables in
comparison to human operators. Despite the maturity of UAV photogrammetric techniques, the extraction
of vector features from derived datasets remains a bottleneck in urban mapping workflows. This research
focuses on optimizing the feature extraction stage, particularly building footprint vectorization, by
integrating Python-based automation into the workflow. The proposed approach streamlines the
transition from processed photogrammetric datasets to structured geospatial outputs, reducing labor and
costs. This study introduces an innovative approach by integrating photogrammetric data with automated
Python-based feature extraction algorithms, providing a reproducible and scalable solution for urban
and rural mapping. Results demonstrate that automated workflows can significantly reduce processing
time while maintaining comparable accuracy to manual vectorization. The deliverables generated
through this workflow, especially updated orthophoto plans, can be directly used by local authorities for
a wide range of applications including urban planning, infrastructure management, cadastral updates
and tax collection. The study highlights the importance of maintaining up-to-date geospatial data for
informed decision-making and efficient governance.
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INTRODUCTION

Surveying buildings is one of the most labour intensive and expensive tasks in
suveying and mapping. The complexity arises from the need to coduct measurements on
private property and the technical challanges that buildings impose such as loss of GNSS
positioning accuracy in proximity to buildings (WuDunn & Zakhor, 2021). Recent advances in
technology such as tilt compensated GNSS receivers, integrated laser measument systems and
photogrammetric based distance estimation tools tried to solve the issue, the process remains
time cosuming and cumbersome to execute in the field (Andaru et al., 2024). The use of
unmanned aerial vehicles (UAVS) is a viable and efficient method for data acquisition, offering
an alternative to traditional surveying (ZHou ET AL., 2022). UAVs enable rapid coverage of
complex or inaccessible areas without the logistical constraints associated with entering private
properties. Among UAV-based technologies, LIDAR and photogrammetry are the two primary
approaches for data collection. LiDAR systems provide highly accurate and detailed point
clouds with consistent geometric reliability, making them particularly suitable for feature
extraction (LIU ET AL., 2025) . However, the high cost of LIDAR sensors and data acquisition
limits their widespread use in large-scale projects. In contrast, UAV photogrammetry offers a
cost effective solution, capable of producing 3D reconstructions from overlapping images
(SADEQ ET AL., 2024). Despite its lower geometric precision and sensitivity to lighting and
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texture conditions, photogrammetric data remain sufficiently accurate for a wide range of
mapping applications (Ji et al., 2024). This study will evaluate whether the photogrammetric
approach can produce satisfactory results. By assessing multiple factors this study aims to
contribute to the development of scalable, reproducible and reliable method for building
footprint extraction.

MATERIAL AND METHODS

A UAV photogrammetric survey was conducted using a DJI Mavic 3 Enterprise that
captured nadir and oblique images(at 30°) with a 80% farward overlap and 80% side overlap at
an altitude of 100m. Data collected this way ensured comprehensive coverage of building
facades and roofs, improving 3D reconstruction (ZHOU ET AL., 2022).

Ground control points were surveyed using a GNSS receiver ensuring accurate
georeferencing. The images were processed in Agisoft Metashape to produce a dense point
cloud and an orthofotoplan (WUDUNN & ZAKHOR, 2021).

The colored point cloud was classified in several classes: ground, vegetation, noise
and buildings. Ground extraction was done using the Cloth Simulation Filter (CSF), which
simulates a virtual cloth that drapes over the inverted point cloud (ZHANG ET AL., 2016).

Figure 1. Representation of CSF
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As described by (ZHANG ET AL., 2016), the CSF algorithm iteratively relaxes a
simulated cloth mesh over the inverted point cloud until it conforms to the terrain surface,
separating ground and non ground points based on height differences and geometric
smoothness. The algorithm’s performance is governed by several key parameters, including
cloth resolution, maximum iteration count, and rigidity coefficient, which control the level of
surface detail the simulated cloth can capture. Once the simulation reaches the end, the cloth’s
final surface is treated as the estimated Digital Terrain Model (DTM), and all points located
above a specified threshold are classified as non-ground points.

Figure 2. Cla e ground points sample ' N Figure 3. DEMSampIe

This physically inspired approach enables the CSF to perform robustly across diverse
landscapes without requiring prior knowledge of the terrain morphology, making it especially
valuable for photogrammetric point cloud classification (Liu ET AL., 2025). After the ground
points were extracted, the remaining point cloud consisted primarily of above-ground features
such as buildings, vegetation, and noise.

Figure 4. Point cloud sample with the ground points filtered out
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To further refine the dataset, vegetation classification was performed based
characteristics derived from the RGB imagery associated with each point. The point colors
were converted to the HSV (Hue, Saturation, Value) color space, which provides a more

Figure 5. Point cloud after vegetation filter - side
view

perceptually uniform representation of color compared to the standard RGB model (JI ET AL.,
2024). In this space, vegetation typically exhibits a Hue range between 90° and 180°,
corresponding to various shades of green, with Saturation and Value values between 0 and 100,
depending on vegetation type, density, and illumination conditions. Points falling within this
spectral range were classified as vegetation, effectively separating them from artificial surfaces
such as roofs or walls, which tend to display different color signatures.

After vegetation classification, the remaning subset was subjected to additional spatial
filtering and noise reduction. Small, isolated point clusters, often caused by reconstruction
artifacts or mismatched features in the photogrammetric process, were identified and removed
using density-based clustering and distance thresholds. Point clusters with less then 50
points/0.5 m? were classified as noise (LI ET AL., 2023). As a result, the refined point cloud
predominantly contained building structures, with minimal interference from vegetation or
noise. This clean dataset served as a reliable foundation for subsequent stages of analysis,
including roof segmentation and building footprint extraction.

After the classification is complete, two raster models were generated:

e DTM (Digital terrain model) interpolated from the points in the ground class;

Figure 2. Point cloud after vegetation filter -
top view

o DEM (Digital elevation model) interpolated from both ground and building points;

Both model were created at a resolution of 7.7cm/pixel and they form the core input
for the extraction algorithm.

The proposed workflow starts with the computation of the normalized Digital Surface
Model (nDSM), derived as the difference between the Digital Elevation Model (DEM)—which
includes both terrain and above-ground objects—and the Digital Terrain Model (DTM)—
which represents only the bare ground surface (Sadeq et al., 2024). Mathematically, this
relationship can be expressed as:

Figure 6. Cleaned point cloud containing buildings class
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nDSM = DEM - DTM

The resulting nDSM quantifies the relative elevation of surface features above ground
level, effectively isolating the vertical component associated with buildings. This height-
normalized raster serves as the foundation for distinguishing built-up features from terrain.

The next stage involves height thresholding, a process that only retains pixels above a
minimum elevation above the ground by using cv2.threshold() function from the openCV
library to apply a binary threshhold to the raster (in this case all pixels with an elevation >2.5m
are atributed the value 1 and the other pixels become 0) (LIU ET AL., 2025). This threshold can
be adjusted depending on the characteristics of the study area and the expected building
heights. For this study the chosen value 2.5m so that smaller buildings are not overlooked.

After thresholding, the binary raster representing potential building regions often
contains imperfections, including small gaps, spurious artifacts, and irregular boundaries. To
address some of these issues, the workflow employs morphological filtering operations,
specifically opening and closing (LI ET AL., 2023).

e The opening operation performs an erosion followed by a dilation, effectively
removing small noise patches and refining the edges of building regions using thr
cv2.MORPH_OPEN function.

e The closing operation performs a dilation followed by an erosion, thereby filling
small voids or gaps within individual buildings and bridging discontinuities between closely
adjacent segments of the same building using the cv2.MORPH_CLOSE function.

An additional GAP parameter is introduced to control the merging of nearby building
segments that belong to a single structure but may appear disconnected due to
photogrammetric or rasterization artifacts. This parameter defines a maximum allowable
separation distance for merging, ensuring more continuous and geometrically coherent
footprints.

Once the morphological refinement is complete, the resulting binary roof mask is
converted from raster to vector format through polygonization using OpenCV and GDAL
libraries. This step transforms contiguous pixel clusters into vector polygons using the
cv2.findContours() function to detect continuous boundaries in the binary mask and the
cv2.approxPolyDP() to simplify each contour by reducing vertex density while mentaining
overall shape (Andaru et al., 2024). The GDAL library is used to transform detected contours
into vector polygons, simplifying and saving them as a shapefile.

RESULTS AND DISCUSSIONS

The proposed workflow successfully generated building footprints with varying
fidelity. In the cases where the buildings were isolated and there was no vegetation the output
was similar to the shape that was manually drawn.

In areas where vegetation was present, the fidelity of the extracted building footprints
was noticeably reduced, a result that aligns with expectations given the characteristics of the
input data (J1 ET AL., 2024). The irregular geometry and variable height of vegetation introduce
local distortions in the surface models derived from photogrammetric reconstruction, leading to
inconsistencies along roof boundaries and partial occlusion of building features (SADEQ ET AL.,
2024).
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Figure 7.

Figure 8. Output affected by vegetation, yellow — manually drawn, blue — generated

The algorithm performed the worst in cases where building density was high. The
predominant source of error was the merging of adjacent buildings into a single polygon,
resulting in the under-segmentation of individual structures (LIU ET AL., 2025). This limitation
is most likely attributed to the inherent constraints of the photogrammetric data acquisition
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process, where, narrow gaps between buildings are difficult to reconstruct reliably from aerial
imagery (ZHOU ET AL., 2022).

Occlusions, limited image overlap, and unfavorable viewing angles reduce the point
density and geometric accuracy in these inter-building spaces, leading to ambiguous elevation
values in the derived surface models and, consequently, to segmentation errors during footprint

extraction.

Figure 9. Errors

in ouput dat

a, yellow — manually drawn

, blue - generated

The results were assesed by comparing the areas of manually digitized buildings with
those of the generated polygons. This comparison enabled evaluation of geometric consistency
of the extraction process, relative to human interpretation. The results are presented in the

following table:

Avrea analysis of building shapes

Table 1

ID | Areal [m?] | Area2 [m?] | A Area[m’] | A Area[%] Obserervations

1 2.420 0.000 2.420 100 Area corectly filtered out < 20 m?
2 3.003 0.000 3.003 100 Area corectly filtered out < 20 m?
3 3.156 0.000 3.156 100 Area corectly filtered out < 20 m?
4 3.197 0.000 3.197 100 Area corectly filtered out < 20 m?
5 4.086 0.000 4.086 100 Area corectly filtered out < 20 m?
6 4.093 0.000 4.093 100 Area corectly filtered out < 20 m?
7 4.386 0.000 4.386 100 Area corectly filtered out < 20 m?
8 4.460 0.000 4.460 100 Area corectly filtered out < 20 m?
9 4.474 0.000 4.474 100 Area corectly filtered out < 20 m?
10 4.701 0.000 4.701 100 Area corectly filtered out < 20 m?
11 4.751 0.000 4.751 100 Area corectly filtered out < 20 m?
12 4.842 0.000 4.842 100 Area corectly filtered out < 20 m?
13 4.955 0.000 4.955 100 Area corectly filtered out < 20 m?
14 5.450 0.000 5.450 100 Area corectly filtered out < 20 m?
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15 5.478 0.000 5.478 100 Area corectly filtered out < 20 m?
16 5.749 0.000 5.749 100 Area corectly filtered out < 20 m?
17 6.298 0.000 6.298 100 Area corectly filtered out < 20 m?
18 6.311 0.000 6.311 100 Area corectly filtered out < 20 m?
19 7.217 0.000 7.217 100 Area corectly filtered out < 20 m?
20 7.292 0.000 7.292 100 Area corectly filtered out < 20 m?
21 7.403 0.000 7.403 100 Area corectly filtered out < 20 m?
22 8.096 0.000 8.096 100 Area corectly filtered out < 20 m?
23 8.450 0.000 8.450 100 Area corectly filtered out < 20 m?
24 10.396 0.000 10.396 100 Area corectly filtered out < 20 m?
25 10.543 0.000 10.543 100 Area corectly filtered out < 20 m?
26 11.009 0.000 11.009 100 Area corectly filtered out < 20 m?
27 11.197 0.000 11.197 100 Area corectly filtered out < 20 m?
28 12.140 0.000 12.140 100 Area corectly filtered out < 20 m?
29 13.358 0.000 13.358 100 Area corectly filtered out < 20 m?
30 13.853 0.000 13.853 100 Area corectly filtered out < 20 m?
31 14.715 0.000 14.715 100 Area corectly filtered out < 20 m?
32 14.818 0.000 14.818 100 Area corectly filtered out < 20 m?
33 16.583 0.000 16.583 100 Area corectly filtered out < 20 m?
34 17.299 0.000 17.299 100 Area corectly filtered out < 20 m?
35 18.280 0.000 18.280 100 Area corectly filtered out < 20 m?
36 18.505 0.000 18.505 100 Area corectly filtered out < 20 m?
37 18.563 0.000 18.563 100 Area corectly filtered out < 20 m?
38 18.666 0.000 18.666 100 Area corectly filtered out < 20 m?
39 21.640 0.000 21.640 100 Area incorectly filtered out > 20 m?
40 22.527 0.000 22.527 100 Area incorectly filtered out > 20 m?
41 23.954 0.000 23.954 100 Area incorectly filtered out > 20 m?
42 24.121 0.000 24.121 100 Area incorectly filtered out > 20 m?
43 26.804 0.000 26.804 100 Area incorectly filtered out > 20 m?
44 30.107 0.000 30.107 100 Area incorectly filtered out > 20 m?
45 30.645 0.000 30.645 100 Area incorectly filtered out > 20 m?
46 33.708 0.000 33.708 100 Area incorectly filtered out > 20 m?
47 37.647 0.000 37.647 100 Area incorectly filtered out > 20 m?
48 37.691 0.000 37.691 100 Area incorectly filtered out > 20 m?
49 38.618 0.000 38.618 100 Area incorectly filtered out > 20 m?
50 40.832 0.000 40.832 100 Area incorectly filtered out > 20 m?
51 42.959 0.000 42.959 100 Area incorectly filtered out > 20 m?
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52 46.141 0.000 46.141 100 Area incorectly filtered out > 20 m?
53 57.931 0.000 57.931 100 Avrea incorectly filtered out > 20 m?
54 24.640 22.324 2.316 9.4 Area within desired threshold of + 10%
55 42.530 26.817 15.713 36.9 Avrea difference out of the desired threshold of + 10%
56 40.592 31.681 8.911 22.0 Area difference out of the desired threshold of + 10%
57 43.099 31.812 11.287 26.2 Area difference out of the desired threshold of + 10%
58 34.756 35.822 -1.066 3.1 Area within desired threshold of + 10%
59 50.803 42.433 2.316 4.6 Area within desired threshold of + 10%
60 2.011 43.432 Area within desired threshold of + 10%
61 43.612 2.191 4.8 Failed element separation
62 49.747 43.900 5.846 11.8 Avrea difference out of the desired threshold of + 10%
63 58.897 47.370 11.527 19.6 Avrea difference out of the desired threshold of + 10%
64 57.668 49.645 8.023 13.9 Area difference out of the desired threshold of + 10%
65 45.899 52.486 -6.587 -14.4 Avrea difference out of the desired threshold of + 10%
66 65.585 57.724 7.861 12.0 Area difference out of the desired threshold of + 10%
67 68.354 58.094 10.260 15.0 Avrea difference out of the desired threshold of + 10%
68 75.024 59.695 15.329 20.4 Area difference out of the desired threshold of + 10%
69 66.317 72.622 -6.306 -9.5 Area within desired threshold of + 10%
70 59.019 78.553 -19.534 -33.1 Avrea difference out of the desired threshold of + 10%
71 81.538 79.425 2114 2.6 Area within desired threshold of + 10%
72 101.685 90.350 11.336 11.1 Avrea difference out of the desired threshold of + 10%
73 80.225 90.608 -10.383 -12.9 Area difference out of the desired threshold of + 10%
74 8.740 Area within desired threshold of + 10%
75 81.630 96.976 -6.606 -7.3 Failed element separation
76 7.752 Area within desired threshold of + 10%
77 84.917 97.951 -5.282 -5.7 Failed element separation
78 88.355 100.059 -11.704 -13.2 Area difference out of the desired threshold of + 10%
79 86.473 79.489 Area difference out of the desired threshold of + 10%
80 95.448 102432 43.7 Failed element separation
81 37.519 -8.539 Area within desired threshold of + 10%
82 58.261 104319 -8.9 Failed element separation
83 122.333 | 107.810 14.523 119 Area difference out of the desired threshold of + 10%
84 104.327 110.377 -5.8 Area within desired threshold of + 10%

-6.050 Failed element separation
85 95.706 111.899 -16.193 -16.9 Area difference out of the desired threshold of + 10%
86 154.338 | 121.773 32.615 211 Area difference out of the desired threshold of + 10%
87 53.237 3.853 2.9 Area within desired threshold of + 10%
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88 79.224 128.608 Failed element separation

89 110.960 135.581 -24.621 -22.2 Avrea difference out of the desired threshold of + 10%
920 92.703 140.174 -47.471 -51.2 Area difference out of the desired threshold of + 10%
91 25.162 Avrea difference out of the desired threshold of + 10%
92 93.873 143449 -24.414 -20.5 Failed element separation

93 138.739 148.900 -10.161 -7.3 Area within desired threshold of + 10%

94 53.318 Area within desired threshold of + 10%

95 89.783 151.856 -8.755 -6.1 Failed element separation

96 70.425 Area within desired threshold of + 10%

97 101.871 157.956 14.340 8.3 Failed element separation

98 37.646 Area within desired threshold of + 10%

99 130.922 176.042 -7.474 -4.4 Failed element separation

100 77.255 Area difference out of the desired threshold of + 10%
101 139.133 193.165 23.223 10.7 Failed element separation

102 43.184 Area within desired threshold of + 10%

103 154.384 206.040 -8.472 -4.3 Failed element separation

104 85.713 Area within desired threshold of + 10%

105 122.963 208.838 -0.162 -0.1 Failed element separation

106 37.858 Area within desired threshold of + 10%

107 162.641 219.043 -18.544 -9.2

108 115.546 Avrea difference out of the desired threshold of + 10%
109 148.164 232043 31.667 12.0 Failed element separation

110 16.472 Avrea difference out of the desired threshold of + 10%
111 98.074 237:366 Failed element separation

112 98.081 -24.739 -11.6

113 185.007 237.712 -52.705 -28.5 Avrea difference out of the desired threshold of + 10%
114 72.044 Area difference out of the desired threshold of + 10%
115 136.803 238.244 -29.397 -14.1 Failed element separation

116 223.039 | 253.243 -30.204 -135 Area difference out of the desired threshold of + 10%
117 186.113 253.565 -67.452 -36.2 Avrea difference out of the desired threshold of + 10%
118 11.489 Area difference out of the desired threshold of + 10%
119 256.079 310219 -42.651 -15.9 Failed element separation

120 178.627 324.067 -145.44 -81.4 Area difference out of the desired threshold of + 10%
121 23.650 Area within desired threshold of + 10%

122 74.012 339.858 Failed element separation

123 242.788 0.592 0.2

124 349.722 368.708 -18.986 -5.4 Area within desired threshold of + 10%
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125 172.258 385.071 5.018 Area within desired threshold of + 10%

126 217.831 1.3 Failed element separation

127 388.223 391.476 -3.253 -0.8 Area within desired threshold of + 10%

128 13.021 Avrea difference out of the desired threshold of + 10%
129 43.297 Failed element separation

130 68.316

131 199.403 | 404336 -80.299 -24.8

132 13.189 Area difference out of the desired threshold of + 10%
133 44.927 Failed element separation

134 74.284

135 75.334

136 | 131517 | 411323 | 72072 -21.2

137 115.605 Area difference out of the desired threshold of + 10%
138 255.139 433410 -62.666 -16.9 Failed element separation

139 28.954 Area difference out of the desired threshold of + 10%
140 77.312 Failed element separation

141 91.340

142 101.759

143 159.332| 549.353 | .90.656 -19.8

The analysis presented in Table 1 provides an evaluation of the performance of the
building extraction algorithm (Area2) relative to manually digitized reference data(Area 1).
The table also includes observations describing wheather the extracted footprint met the
required criteria or exhibited speciffic issues, such as incorrect filtering or failed feature
separation.

The results indicate that from the initial data set of 143 buildings, 100% of buildings
with areas <20m? were filtered out. From total number of buildings 15, representing 10.49% of
total were wrongly filtered out. This indicates that the filtering stage is overly restrictive in
certain contexts, or there is insufficient differentiation between small buildings and adjacent
structures.

When analyzing feature segmentation we observe that 57 buildings, representing
39.86% of the total data set, failed this step resulting in only 25 polygons.

Looking at the A Area values we observe that only 37 out of the 143, representing
25.87% of shapes fall within the area difference threshold of + 10%.

These results align with findings from recent studies emphasizing the difficulty of
footprint delineation in dense or vegetated areas using photogrammetry alone (WuDunn &
Zakhor, 2021; Andaru et al., 2024). They suggest that integrating cadastral boundaries,
adaptive thresholds, or machine-learning segmentation models (Li et al., 2023; Mohamed et al.,
2022) could significantly enhance feature differentiation and footprint accuracy.
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CONCLUSIONS

The workflow evaluated by this study revealed important limitations: 100% of sub 20
m2 objects were correctly discarded, yet 15 buildings (10.49%) above this threshold were
wrongly filtered out. 57 buildings (39.86%) failed the segmentation step due to under-
segmentation/merging, and only 37 of 143 footprints (25.87%) met the +10% area-difference
criterion. These outcomes indicate that, while UAV photogrammetry is a viable, cost-effective
data source for footprint extraction, the current parameterization and separation logic are not
sufficiently robust.

The main sources of error were consistent with the characteristics of image-based 3D
reconstruction: reduced fidelity in vegetated areas and ambiguous geometry in narrow inter-
building gaps led to merged roofs and over-aggressive filtering. Addressing these weaknesses
will require both data and algorithmic refinements.

On the data side, strengthening acquisition with increased oblique coverage and cross-
track overlap to better resolve facades and alleys and fusing auxillary constraints such as
cadastral parcel boundaries to limit cross-parcel merges.

On the algorithmic side, promising directions include adaptive, context-aware
thresholds tied to local height statistics, instance-level separation using distance-transform
watershed or graph-based splitting on the binary roof mask.

While LIiDAR remains superior for automation and structural precision, UAV
photogrammetry provides a cost-effective alternative suitable for municipal-scale applications.
Future improvements should focus on integrating contextual information, such as cadastral
parcel data and adaptive morphological parameters, to reduce over-filtering and enhance roof
separation. Incorporating deep learning approaches for object detection and feature
segmentation may further improve consistency and scalability, moving UAV photogrammetry
closer to the automation performance traditionally associated with LiDAR-based workflows.
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