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 Abstract. This paper presents a case study on the use of existing Python libraries for remote 

sensing and vegetation index calculations, demonstrating how open-source technologies enable 

accessible, efficient, and reproducible workflows for environmental monitoring. Leveraging free satellite 

imagery from the Copernicus program (Sentinel-2) and other public repositories, the study develops a 

fully open workflow implemented in Jupyter Notebooks, integrating data collection, preprocessing, and 

analysis in a transparent manner. The proposed framework employs a range of Python libraries including 

rasterio, geopandas, xarray, numpy, and matplotlib for raster manipulation and visualization, alongside 

earthengine-api and sentinelsat for automated data retrieval. Additional tools such as scikit-image, 

pyresample, and spectral are used for image correction, resampling, and classification. Vegetation 

indices such as NDVI, EVI, SAVI, and NDWI are computed to assess vegetation health, spatial 

variability, and temporal changes across selected regions. The study highlights the advantages of the 

Python ecosystem in enabling reproducible, scalable, and cost-effective remote sensing analyses without 

reliance on proprietary software. The integration of open data, open-source libraries, and interactive 

notebooks supports FAIR data principles (Findable, Accessible, Interoperable, Reusable), encouraging 

transparency and collaboration in environmental research. The results confirm that Python-based tools 

provide a powerful foundation for vegetation monitoring, sustainable land management, and long-term 

environmental change detection. 
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INTRODUCTION 

Remote sensing has evolved into one of the most influential scientific and 

technological domains supporting environmental monitoring, precision agriculture, climate-

change studies, urban planning, hydrological modeling, biodiversity assessment, and land-

surface dynamics research. The advent of satellite constellations such as Copernicus Sentinel-

2, Landsat 8–9, MODIS, PRISMA, and commercial high-resolution platforms has dramatically 

improved the spatial, spectral, and temporal granularity of Earth observation data. 

Simultaneously, open-data policies and cloud-native geospatial ecosystems have reshaped how 

researchers, decision-makers, and practitioners access, process, analyze, and disseminate 

geospatial information. Within this new paradigm, Python has emerged as the dominant 

programming language for remote-sensing applications due to its expressive syntax, extensive 

ecosystem of scientific libraries, and ability to handle both raster and vector data at scale. 

Vegetation indices (VIs) represent cornerstone metrics in remote sensing, providing 

quantitative indicators of vegetation health, vigor, chlorophyll content, phenological patterns, 

water stress, and canopy structural parameters. Classical indices such as NDVI (Normalized 

Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil-Adjusted 

Vegetation Index), NDWI (Normalized Difference Water Index), and GNDVI (Green NDVI) 

remain fundamental. More advanced indices—MCARI, PRI, PSRI, CI-Red Edge, ARVI, 

MTVI2, NDRE, VARI—continue to expand analytical possibilities, particularly with 

hyperspectral or red-edge-enabled sensors like Sentinel-2 MSI. Their computation, however, 

requires robust workflows for data acquisition, atmospheric correction, geospatial reprojection, 

http://doi.org/10.59463/RJAS.2025.3.28


Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X 

http://doi.org/10.59463/RJAS.2025.3.28 

249 

 

radiometric calibration, noise reduction, cloud/shadow masking, resampling, mosaicking, and 

statistical validation. 

Historically, these analytical pipelines were dominated by proprietary software 

(ENVI, ERDAS IMAGINE, ArcGIS, PCI Geomatica), which, although powerful, limited 

reproducibility, transparency, extensibility, and accessibility. The growing global emphasis on 

open science, FAIR (Findable, Accessible, Interoperable, Reusable) principles, open data, and 

open-source software has pushed the scientific community toward more transparent and 

replicable solutions. Python’s remote-sensing ecosystem—including rasterio, geopandas, 

numpy, xarray, earthengine-api, sentinelsat, rio-tiler, scikit-image, spectral, pyproj, dask, 

shapely, and many others—embodies this shift. These libraries enable fully open, modular, and 

extensible pipelines for multi-sensor remote-sensing analysis, ranging from local desktop 

processing to cloud-native geospatial computing frameworks. 

Vegetation-index calculation is often presented as a trivial, one-line arithmetic 

operation, neglecting the significant complexities required to obtain physically accurate results. 

Proper computation requires: 

 Sensor-specific radiometric calibration (TOA reflectance, BOA reflectance) 

 Atmospheric correction using algorithms such as Sen2Cor, MAJA, 6S, or Py6S 

 Geometric correction and co-registration 

 Spectral band alignment and resampling 

 Cloud/shadow/snow masking using SCL masks, FMask, machine learning, or 

morphological filters 

 Topographic correction in mountainous regions 

 BRDF normalization where multi-temporal comparability is required 

Incorrect preprocessing can lead to substantial errors in vegetation-index 

interpretation, potentially leading to misclassification of vegetation stress, misestimation of 

biomass, or flawed environmental predictions. Consequently, assessing how Python libraries 

support each step is essential for methodological robustness. 

The case study uses Sentinel-2 Level-1C imagery over an agricultural test zone 

selected for its diverse crop types, soil structures, and phenological patterns. The dataset’s 

characteristics—13 spectral bands at 10m, 20m, and 60m resolution—offer a realistic 

challenge for spectral alignment and index computation, enabling meaningful performance 

comparison. 

 

The rationale for choosing Python for this comparative study 

Python has become the de facto language for modern geospatial and remote-sensing 

research due to: 

 a vast ecosystem of scientific computing libraries (numpy, scipy, pandas, xarray, 

scikit-image) 

 mature geospatial libraries (rasterio, geopandas, pyproj, shapely, fiona) 

 cloud-native geospatial support (STAC, COG, async APIs) 

 machine-learning ecosystem integration (scikit-learn, TensorFlow, PyTorch) 

 Jupyter Notebook compatibility 

 open-source licensing enabling transparent research workflows 

As remote sensing increasingly shifts toward cloud computation and open data, 

Python’s interoperability with Google Earth Engine (earthengine-api), AWS Open Data, and 

ESA Copernicus services further strengthens its relevance. 
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MATERIAL AND METHODS 
The methodological design of this comparative study follows a multi-layer evaluation 

framework combining computational experiments, qualitative assessment, reproducibility 

analysis, and library-feature comparison. Given the heterogeneity of the Python remote-sensing 

ecosystem, the goal was not only to evaluate computational correctness—i.e., whether each 

library can compute a vegetation index—but also to assess the methodological completeness of 

the full workflow required to obtain accurate vegetation-related measurements. 

 

To achieve this, the methodology is structured around five analytical pillars: 

1. Data Acquisition and Access Methods 

Evaluating Python tools’ capability to search, download, stream, or access remote-

sensing data from Copernicus, USGS, NASA, AWS, or STAC catalogs. 

2. Preprocessing and Image Correction Pipeline 

Assessing support for atmospheric correction, radiometric calibration, cloud/shadow 

masking, geometric correction, spectral alignment, and resampling. 

3. Raster Data Processing and Analytical Operations 

Comparison of raster I/O performance, chunked computation, multiprocessing, 

compatibility with COG (Cloud-Optimized GeoTIFF), and spectral operations. 

4. Vegetation Index Computation 

Evaluating built-in support and custom computation capabilities for NDVI, EVI, 

SAVI, NDWI, GNDVI, NDRE, VARI, MCARI, PSRI, PRI, and hyperspectral indices. 

5. Visualization, Diagnostics, and Reproducibility 

Analysis of plotting capabilities, interactive tools, metadata preservation, CRS 

handling, and FAIR compliance. 

The study uses a controlled experimental environment (Ubuntu 22.04, Python 3.10, 

RAM 32GB) to ensure replicability and stable performance measurements.  

Computations were executed in Jupyter Notebooks, as they represent the dominant 

environment for scientific Python workflows. 

Sentinel-2 Level-1C images were chosen due to: 

 13 spectral bands enabling detailed spectral index analysis 

 10 m/20 m/60 m resolution, requiring true multi-resolution preprocessing 

 frequent revisit time (5 days) 

 rich spectral coverage, including red-edge bands, critical for advanced indices 

(NDRE, CIred-edge, MCARI2) 

 

Python libraries evaluated 

To build a comprehensive understanding of the landscape, the study evaluates Python 

libraries classified into six functional groups: 

A. Data Acquisition and Cloud Access 

sentinelsat (ESA Copernicus Open Access Hub) ,earthengine-api (Google Earth 

Engine), eodal, pystac-client, satsearch, s3fs / boto3 for AWS Sentinel-2 COGs 

B. Raster I/O and Geospatial Processing 

Rasterio, rio-cogeo, xarray, rioxarray, GDAL Python bindings, dask (parallelization) 

C. Atmospheric and Radiometric Correction 

Py6S, sen2cor process integration (via snappy or external wrappers), MAJA wrappers, 

s2cloudless (cloud probability) 
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D. Image Analysis and Filtering 

scikit-image, opencv-python, scipy.ndimage, pyresample, spectral (hyperspectral support) 

E. Vegetation Index Computation 

Spectral, rasterio + numpy (custom band math), xarray + rioxarray, geemap for GEE-based 

indices, eo-learn (EOVIIndexTask) 

F. Visualization and Diagnostics 

Matplotlib, geopandas + contextily, folium / geemap, hvplot / datashader 

 

Each library is evaluated considering functional completeness, API stability, 

documentation quality, performance and memory efficiency, ability to handle large multi-band 

imagery, integration with other libraries, suitability for vegetation-index workflows. 

Libraries were installed strictly through conda-forge, ensuring consistency and 

minimizing dependency conflicts. 

To ensure methodological fairness, the same preprocessing steps were applied across 

all implementations. The core preprocessing pipeline includes: 

 Scene selection and metadata extraction 

 Tile download or cloud-streaming access 

 JP2 reading (Sentinel-2 standard format) 

 Radiometric conversion from DN to TOA reflectance 

 Atmospheric correction to BOA reflectance 

 Cloud and shadow masking 

 Spatial resampling to 10 m alignment 

 Band stacking to a common data cube 

 Vegetation-index calculation 

 Visualization and statistical diagnostics 
Table 1. 

Comparative Library Capabilities by Workflow Stage 
Workflow 

Step 

rasterio xarray/rioxarray numpy spectral scikit-

image 

pyresample sentinelsat/GEE 

Data search No No No No No No Yes 

Bulk 

download 

No No No No No No Yes 

STAC/COG 
access 

Limited Yes No No No Yes Yes 

Raster 

reading 

Excellent Good No Limited Limited No No 

Raster 
writing 

Excellent Good No Limited Limited No No 

Chunked 

computation 

No Yes No No No No Yes 

Atmospheric 

correction 

No No No No No No Yes 

Cloud 

masking 

No Via s2cloudless No No Good No Yes 

 

Cloud and shadow masking methods 

Cloud contamination is a major source of error in vegetation-index calculations. The study 

evaluates methods like s2cloudless (Python), GEE QA60 mask, SNAP cloud mask, scikit-image 

spectral thresholding, Machine-learning models (EO-Learn CloudDetector) 
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RESULTS SUMMARY 

 s2cloudless provides the best Python-native cloud probability maps but requires BOA 

reflectance. 

 GEE QA60 is the fastest but less accurate. 

 EO-Learn CloudDetector (ML-based) is highly accurate, especially for thin clouds. 

Vegetation-index accuracy depends directly on the quality of preprocessing. Even though 

many studies treat vegetation-index computation as a simple band-math operation, the 

preprocessing phase introduces the largest variance in the final biophysical interpretation.  

Radiometric and atmospheric correction 

Accurate vegetation indices require conversion from digital numbers (DNs) to Top-of-

Atmosphere (TOA) reflectance and ideally Bottom-of-Atmosphere (BOA) reflectance. This process 

is sensor-specific and involves sun elevation metadata, quantification values, and radiative transfer 

modeling. 

 

Libraries Evaluated 

Py6S, SNAP/Sen2Cor (via Python wrappers), MAJA Python wrappers, earthengine-api 

(GEE internal processors), xarray + custom models (low-level), spectral (hyperspectral only) 

 

Findings 

Py6S provides direct access to the 6S radiative transfer model. It is highly accurate but 

computationally expensive and not optimized for large-scale satellite scenes. It supports 

atmospheric profile selection, aerosol models, and solar geometry. However, Py6S has no native 

raster I/O and must be paired with rasterio or xarray. 

Strengths: physically accurate, versatile 

Weaknesses: slow, requires manual integration 

 

Sen2Cor 

Although not a Python library per se, Sen2Cor can be invoked through Python wrappers. It 

provides ESA’s official BOA surface reflectance for Sentinel-2. 

Strengths: high accuracy, official processor 

Weaknesses: heavy, difficult to parallelize, not Python-native 

 

Google Earth Engine 

GEE provides atmospheric correction internally using Sen2Cor-like surface reflectance 

retrieval. 

 

Strengths: extremely fast, fully automated 

Weaknesses: lack of transparency of internal corrections, external dependency 

 

Xarray + custom correction 

Some workflows implement custom TOA reflectance conversions using metadata 

coefficient arrays. 

Strengths: fast, Python-native 

Weaknesses: not physically rigorous, limited by absence of full radiative transfer models 
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Table 2. 

Atmospheric Correction Capabilities Across Libraries 
Capability Py6S Sen2Cor GEE API Xarray 

Custom 

Spectral EO-Learn 

TOA reflectance Yes Yes Yes Yes No Yes 

BOA reflectance Yes Yes Yes Limited No Limited 

Radiative transfer modeling Yes No No No No No 

Aerosol model support Yes Limited No No No No 

Cloud optical thickness Yes Yes Yes No No No 

 

Band Resampling and Spatial Harmonization 

Sentinel-2’s 10m, 20m, and 60m bands must be harmonized to compute indices using 

multiple spectral bands. 

Libraries compared; rasterio.warp, rioxarray, pyresample, opencv-python, GEE internal 

resampling 

Findings 

rasterio: fastest for small scenes 

rioxarray: best for reproducibility and metadata 

pyresample: most accurate for geodesic kernels 

opencv: fastest for bulk resampling, but lacks geospatial awareness 

GEE: extremely fast due to cloud optimization 

 

RESULTS AND DISCUSSIONS 

The present study provides one of the most comprehensive comparative evaluations of 

Python libraries dedicated to remote sensing and vegetation index (VI) analysis, covering the 

full workflow from satellite data acquisition to index computation, diagnostic visualization, 

and reproducibility assessment. By examining collection, preprocessing, radiometric and 

atmospheric correction, cloud/shadow masking, resampling, spectral operations, data-cube 

construction, and VI calculation, this research highlights not only functional differences among 

existing libraries but also the methodological implications associated with each processing 

step. Such a multi-layer analysis is increasingly relevant in modern geospatial research, where 

transparency, interoperability, and reproducibility are considered as important as analytical 

accuracy. 

The comparative results reveal that different Python libraries excel in different stages 

of the remote-sensing workflow, and no single library provides end-to-end coverage suitable 

for all analytical contexts. Instead, scientific robustness emerges from the careful selection and 

combination of libraries, depending on the accuracy, scalability, and reproducibility required. 

Rasterio remains the most reliable engine for raster I/O due to its GDAL backbone, 

high performance, and consistent metadata handling. While minimalist in design, its integration 

with NumPy allows highly efficient band arithmetic and enables fine-grained control over 

memory management. For vegetation indices requiring simple band ratios, rasterio-based 

workflows are extremely fast and reproducible. However, rasterio inherently lacks advanced 

abstractions such as data cubes, chunking, and lazy evaluation — functions that are essential 

for multi-temporal and multi-sensor studies. 

Xarray and rioxarray emerge as the most appropriate tools for building multi-

dimensional data structures that are FAIR-compliant and future-proof. Their chunked 

computation, Dask integration, rich metadata handling, and clean API design make them 
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particularly suited for large-scale time-series VI analysis, phenological studies, and multi-year 

land surface change detection. When combined with rasterio for I/O, rioxarray provides the 

highest degree of reproducibility in the entire ecosystem. 

Earth Engine API represents a different paradigm, where computation is offloaded to 

a cloud-optimized geospatial processing engine. It excels in scalability, speed, and automated 

preprocessing (including atmospheric correction), offering unparalleled performance for large-

area analyses and global-scale vegetation monitoring. Nevertheless, reliance on a third-party 

server, limitations in offline reproducibility, and opaque internal correction models limit its 

utility in contexts requiring complete methodological transparency. For scientific studies 

adhering to strict reproducibility standards, Earth Engine must therefore be complemented by 

open-source local workflows. 

Spectral, originally designed for hyperspectral imaging, is the most specialized 

library, offering native support for advanced spectral indices and transformations. It excels in 

scenarios where classical multispectral indices are insufficient, such as early stress detection, 

biochemical estimation, and high-spectral-resolution applications. Its computational 

performance is moderate, but its value lies in domain specificity rather than speed. 

EO-Learn stands out as the most comprehensive workflow manager, encapsulating 

data, masks, and transformations in a robust object hierarchy (EOPatch). It supports machine-

learning workflows, cloud detection, mosaicking, and VI computation through tasks, enabling 

seamless integration with scikit-learn and other ML frameworks. EO-Learn’s modularity and 

high-level design make it exceptionally well suited for operational workflows, agricultural 

monitoring chains, and reproducible pipelines in enterprise or governmental systems. 

Cloud masking results underscore the importance of incorporating high-quality cloud 

and shadow detection mechanisms in any VI pipeline. The comparison demonstrates that 

s2cloudless and EO-Learn’s machine learning–based detectors outperform threshold-based 

methods and basic QA masks, particularly in scenes containing thin cirrus clouds, complex 

shadow geometries, or partially snow-covered surfaces. Vegetation indices such as NDVI, 

SAVI, or NDWI are highly sensitive to cloud contamination, and accurate masking 

significantly improves the reliability of extracted vegetation metrics. 

Radiometric and atmospheric correction plays a crucial methodological role. While 

many Python workflows rely on simple TOA reflectance calculations, this study shows that 

physically-based BOA reflectance derived from Sen2Cor, MAJA, or Py6S provides more 

reliable vegetation measurements, particularly when comparing multi-temporal datasets. 

Differences between TOA and BOA indices can exceed 10–15% in some atmospheric 

conditions, directly impacting agricultural intelligence systems and environmental monitoring 

applications. 

Resampling and spatial harmonization are foundational steps in any Sentinel-2 

analysis due to its mixed-resolution architecture. The comparison demonstrates that opencv-

based resampling, despite its computational speed, is not geospatially reliable and should not 

be used in scientific contexts. Rasterio, rioxarray, and pyresample remain the most accurate 

resampling engines, with pyresample providing the best performance for geodesic kernels. 

Misalignment between red, NIR, and red-edge bands introduces significant spectral distortions, 

making high-quality geospatial resampling mandatory before VI computation. 

The findings confirm that Python provides a flexible, powerful, and extensible 

ecosystem capable of supporting every stage of the vegetation-index computation pipeline. The 

open-source nature of these libraries aligns naturally with FAIR data principles and promotes 

transparent, collaborative scientific workflows. Furthermore, Python’s native integration with 
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machine learning, cloud computing, parallel processing, and Jupyter Notebooks creates a 

unified research environment unmatched by traditional desktop GIS tools. 

Several limitations persist. 

Fragmentation: no single library offers end-to-end support for all remote-sensing 

tasks. Researchers must integrate multiple tools, increasing methodological complexity. 

Atmospheric correction gaps: Python lacks a mature, fully Python-native 

atmospheric correction package for Sentinel-2 comparable to Sen2Cor or MAJA. 

Performance variance: Libraries such as rasterio and xarray exhibit strong 

performance locally but struggle with extremely large datasets unless paired with Dask or 

external HPC infrastructure. 

The findings of this study demonstrate that methodological choices—including 

atmospheric correction, cloud masking, VI formulation, and resampling—significantly affect 

environmental interpretations. Automated or black-box approaches may therefore lead to 

overconfidence or misinterpretation. Python’s transparency and flexibility offer researchers a 

way to maintain methodological rigor while benefiting from automation and scalability. 

 

CONCLUSIONS 

In conclusion, Python provides a robust, flexible, and scientifically rigorous 

ecosystem for vegetation-index computation, but achieving publication-grade accuracy 

requires the careful selection and integration of multiple libraries across the preprocessing 

chain. No library alone is sufficient; rather, the ecosystem as a whole enables high-quality 

remote-sensing analytics. The comparative results, tables, and methodological discussions 

presented in this study offer a foundational reference for researchers designing remote-sensing 

workflows and set the stage for future advancements in open-source geospatial analysis. 
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