
Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

248

EXISTENT PYTHON LIBRARIES FOR REMOTE SENSING AND

VEGETATION INDEXES CALCULATIONS- A CASE STUDY

 I.A. MECA1, Razvan GUI-BAHNER1, Mihai HERBEI1, Adina HORABLAGA1, C.A. POPESCU1

1 University of Life Sciences "King Michael I" from Timisoara

Corresponding author: adinahorablaga@usvt.ro

 Abstract. This paper presents a case study on the use of existing Python libraries for remote

sensing and vegetation index calculations, demonstrating how open-source technologies enable

accessible, efficient, and reproducible workflows for environmental monitoring. Leveraging free satellite

imagery from the Copernicus program (Sentinel-2) and other public repositories, the study develops a

fully open workflow implemented in Jupyter Notebooks, integrating data collection, preprocessing, and

analysis in a transparent manner. The proposed framework employs a range of Python libraries including

rasterio, geopandas, xarray, numpy, and matplotlib for raster manipulation and visualization, alongside

earthengine-api and sentinelsat for automated data retrieval. Additional tools such as scikit-image,

pyresample, and spectral are used for image correction, resampling, and classification. Vegetation

indices such as NDVI, EVI, SAVI, and NDWI are computed to assess vegetation health, spatial

variability, and temporal changes across selected regions. The study highlights the advantages of the

Python ecosystem in enabling reproducible, scalable, and cost-effective remote sensing analyses without

reliance on proprietary software. The integration of open data, open-source libraries, and interactive

notebooks supports FAIR data principles (Findable, Accessible, Interoperable, Reusable), encouraging

transparency and collaboration in environmental research. The results confirm that Python-based tools

provide a powerful foundation for vegetation monitoring, sustainable land management, and long-term

environmental change detection.

Keywords: Python, remote sensing, vegetation indices, Sentinel-2, Copernicus, open-source,

Jupyter Notebooks

INTRODUCTION

Remote sensing has evolved into one of the most influential scientific and

technological domains supporting environmental monitoring, precision agriculture, climate-

change studies, urban planning, hydrological modeling, biodiversity assessment, and land-

surface dynamics research. The advent of satellite constellations such as Copernicus Sentinel-

2, Landsat 8–9, MODIS, PRISMA, and commercial high-resolution platforms has dramatically

improved the spatial, spectral, and temporal granularity of Earth observation data.

Simultaneously, open-data policies and cloud-native geospatial ecosystems have reshaped how

researchers, decision-makers, and practitioners access, process, analyze, and disseminate

geospatial information. Within this new paradigm, Python has emerged as the dominant

programming language for remote-sensing applications due to its expressive syntax, extensive

ecosystem of scientific libraries, and ability to handle both raster and vector data at scale.

Vegetation indices (VIs) represent cornerstone metrics in remote sensing, providing

quantitative indicators of vegetation health, vigor, chlorophyll content, phenological patterns,

water stress, and canopy structural parameters. Classical indices such as NDVI (Normalized

Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil-Adjusted

Vegetation Index), NDWI (Normalized Difference Water Index), and GNDVI (Green NDVI)

remain fundamental. More advanced indices—MCARI, PRI, PSRI, CI-Red Edge, ARVI,

MTVI2, NDRE, VARI—continue to expand analytical possibilities, particularly with

hyperspectral or red-edge-enabled sensors like Sentinel-2 MSI. Their computation, however,

requires robust workflows for data acquisition, atmospheric correction, geospatial reprojection,

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

249

radiometric calibration, noise reduction, cloud/shadow masking, resampling, mosaicking, and

statistical validation.

Historically, these analytical pipelines were dominated by proprietary software

(ENVI, ERDAS IMAGINE, ArcGIS, PCI Geomatica), which, although powerful, limited

reproducibility, transparency, extensibility, and accessibility. The growing global emphasis on

open science, FAIR (Findable, Accessible, Interoperable, Reusable) principles, open data, and

open-source software has pushed the scientific community toward more transparent and

replicable solutions. Python’s remote-sensing ecosystem—including rasterio, geopandas,

numpy, xarray, earthengine-api, sentinelsat, rio-tiler, scikit-image, spectral, pyproj, dask,

shapely, and many others—embodies this shift. These libraries enable fully open, modular, and

extensible pipelines for multi-sensor remote-sensing analysis, ranging from local desktop

processing to cloud-native geospatial computing frameworks.

Vegetation-index calculation is often presented as a trivial, one-line arithmetic

operation, neglecting the significant complexities required to obtain physically accurate results.

Proper computation requires:

 Sensor-specific radiometric calibration (TOA reflectance, BOA reflectance)

 Atmospheric correction using algorithms such as Sen2Cor, MAJA, 6S, or Py6S

 Geometric correction and co-registration

 Spectral band alignment and resampling

 Cloud/shadow/snow masking using SCL masks, FMask, machine learning, or

morphological filters

 Topographic correction in mountainous regions

 BRDF normalization where multi-temporal comparability is required

Incorrect preprocessing can lead to substantial errors in vegetation-index

interpretation, potentially leading to misclassification of vegetation stress, misestimation of

biomass, or flawed environmental predictions. Consequently, assessing how Python libraries

support each step is essential for methodological robustness.

The case study uses Sentinel-2 Level-1C imagery over an agricultural test zone

selected for its diverse crop types, soil structures, and phenological patterns. The dataset’s

characteristics—13 spectral bands at 10m, 20m, and 60m resolution—offer a realistic

challenge for spectral alignment and index computation, enabling meaningful performance

comparison.

The rationale for choosing Python for this comparative study

Python has become the de facto language for modern geospatial and remote-sensing

research due to:

 a vast ecosystem of scientific computing libraries (numpy, scipy, pandas, xarray,

scikit-image)

 mature geospatial libraries (rasterio, geopandas, pyproj, shapely, fiona)

 cloud-native geospatial support (STAC, COG, async APIs)

 machine-learning ecosystem integration (scikit-learn, TensorFlow, PyTorch)

 Jupyter Notebook compatibility

 open-source licensing enabling transparent research workflows

As remote sensing increasingly shifts toward cloud computation and open data,

Python’s interoperability with Google Earth Engine (earthengine-api), AWS Open Data, and

ESA Copernicus services further strengthens its relevance.

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

250

MATERIAL AND METHODS
The methodological design of this comparative study follows a multi-layer evaluation

framework combining computational experiments, qualitative assessment, reproducibility

analysis, and library-feature comparison. Given the heterogeneity of the Python remote-sensing

ecosystem, the goal was not only to evaluate computational correctness—i.e., whether each

library can compute a vegetation index—but also to assess the methodological completeness of

the full workflow required to obtain accurate vegetation-related measurements.

To achieve this, the methodology is structured around five analytical pillars:

1. Data Acquisition and Access Methods

Evaluating Python tools’ capability to search, download, stream, or access remote-

sensing data from Copernicus, USGS, NASA, AWS, or STAC catalogs.

2. Preprocessing and Image Correction Pipeline

Assessing support for atmospheric correction, radiometric calibration, cloud/shadow

masking, geometric correction, spectral alignment, and resampling.

3. Raster Data Processing and Analytical Operations

Comparison of raster I/O performance, chunked computation, multiprocessing,

compatibility with COG (Cloud-Optimized GeoTIFF), and spectral operations.

4. Vegetation Index Computation

Evaluating built-in support and custom computation capabilities for NDVI, EVI,

SAVI, NDWI, GNDVI, NDRE, VARI, MCARI, PSRI, PRI, and hyperspectral indices.

5. Visualization, Diagnostics, and Reproducibility

Analysis of plotting capabilities, interactive tools, metadata preservation, CRS

handling, and FAIR compliance.

The study uses a controlled experimental environment (Ubuntu 22.04, Python 3.10,

RAM 32GB) to ensure replicability and stable performance measurements.

Computations were executed in Jupyter Notebooks, as they represent the dominant

environment for scientific Python workflows.

Sentinel-2 Level-1C images were chosen due to:

 13 spectral bands enabling detailed spectral index analysis

 10 m/20 m/60 m resolution, requiring true multi-resolution preprocessing

 frequent revisit time (5 days)

 rich spectral coverage, including red-edge bands, critical for advanced indices

(NDRE, CIred-edge, MCARI2)

Python libraries evaluated

To build a comprehensive understanding of the landscape, the study evaluates Python

libraries classified into six functional groups:

A. Data Acquisition and Cloud Access

sentinelsat (ESA Copernicus Open Access Hub) ,earthengine-api (Google Earth

Engine), eodal, pystac-client, satsearch, s3fs / boto3 for AWS Sentinel-2 COGs

B. Raster I/O and Geospatial Processing

Rasterio, rio-cogeo, xarray, rioxarray, GDAL Python bindings, dask (parallelization)

C. Atmospheric and Radiometric Correction

Py6S, sen2cor process integration (via snappy or external wrappers), MAJA wrappers,

s2cloudless (cloud probability)

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

251

D. Image Analysis and Filtering

scikit-image, opencv-python, scipy.ndimage, pyresample, spectral (hyperspectral support)

E. Vegetation Index Computation

Spectral, rasterio + numpy (custom band math), xarray + rioxarray, geemap for GEE-based

indices, eo-learn (EOVIIndexTask)

F. Visualization and Diagnostics

Matplotlib, geopandas + contextily, folium / geemap, hvplot / datashader

Each library is evaluated considering functional completeness, API stability,

documentation quality, performance and memory efficiency, ability to handle large multi-band

imagery, integration with other libraries, suitability for vegetation-index workflows.

Libraries were installed strictly through conda-forge, ensuring consistency and

minimizing dependency conflicts.

To ensure methodological fairness, the same preprocessing steps were applied across

all implementations. The core preprocessing pipeline includes:

 Scene selection and metadata extraction

 Tile download or cloud-streaming access

 JP2 reading (Sentinel-2 standard format)

 Radiometric conversion from DN to TOA reflectance

 Atmospheric correction to BOA reflectance

 Cloud and shadow masking

 Spatial resampling to 10 m alignment

 Band stacking to a common data cube

 Vegetation-index calculation

 Visualization and statistical diagnostics
Table 1.

Comparative Library Capabilities by Workflow Stage
Workflow

Step

rasterio xarray/rioxarray numpy spectral scikit-

image

pyresample sentinelsat/GEE

Data search No No No No No No Yes

Bulk

download

No No No No No No Yes

STAC/COG
access

Limited Yes No No No Yes Yes

Raster

reading

Excellent Good No Limited Limited No No

Raster
writing

Excellent Good No Limited Limited No No

Chunked

computation

No Yes No No No No Yes

Atmospheric

correction

No No No No No No Yes

Cloud

masking

No Via s2cloudless No No Good No Yes

Cloud and shadow masking methods

Cloud contamination is a major source of error in vegetation-index calculations. The study

evaluates methods like s2cloudless (Python), GEE QA60 mask, SNAP cloud mask, scikit-image

spectral thresholding, Machine-learning models (EO-Learn CloudDetector)

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

252

RESULTS SUMMARY

 s2cloudless provides the best Python-native cloud probability maps but requires BOA

reflectance.

 GEE QA60 is the fastest but less accurate.

 EO-Learn CloudDetector (ML-based) is highly accurate, especially for thin clouds.

Vegetation-index accuracy depends directly on the quality of preprocessing. Even though

many studies treat vegetation-index computation as a simple band-math operation, the

preprocessing phase introduces the largest variance in the final biophysical interpretation.

Radiometric and atmospheric correction

Accurate vegetation indices require conversion from digital numbers (DNs) to Top-of-

Atmosphere (TOA) reflectance and ideally Bottom-of-Atmosphere (BOA) reflectance. This process

is sensor-specific and involves sun elevation metadata, quantification values, and radiative transfer

modeling.

Libraries Evaluated

Py6S, SNAP/Sen2Cor (via Python wrappers), MAJA Python wrappers, earthengine-api

(GEE internal processors), xarray + custom models (low-level), spectral (hyperspectral only)

Findings

Py6S provides direct access to the 6S radiative transfer model. It is highly accurate but

computationally expensive and not optimized for large-scale satellite scenes. It supports

atmospheric profile selection, aerosol models, and solar geometry. However, Py6S has no native

raster I/O and must be paired with rasterio or xarray.

Strengths: physically accurate, versatile

Weaknesses: slow, requires manual integration

Sen2Cor

Although not a Python library per se, Sen2Cor can be invoked through Python wrappers. It

provides ESA’s official BOA surface reflectance for Sentinel-2.

Strengths: high accuracy, official processor

Weaknesses: heavy, difficult to parallelize, not Python-native

Google Earth Engine

GEE provides atmospheric correction internally using Sen2Cor-like surface reflectance

retrieval.

Strengths: extremely fast, fully automated

Weaknesses: lack of transparency of internal corrections, external dependency

Xarray + custom correction

Some workflows implement custom TOA reflectance conversions using metadata

coefficient arrays.

Strengths: fast, Python-native

Weaknesses: not physically rigorous, limited by absence of full radiative transfer models

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

253

Table 2.

Atmospheric Correction Capabilities Across Libraries
Capability Py6S Sen2Cor GEE API Xarray

Custom

Spectral EO-Learn

TOA reflectance Yes Yes Yes Yes No Yes

BOA reflectance Yes Yes Yes Limited No Limited

Radiative transfer modeling Yes No No No No No

Aerosol model support Yes Limited No No No No

Cloud optical thickness Yes Yes Yes No No No

Band Resampling and Spatial Harmonization

Sentinel-2’s 10m, 20m, and 60m bands must be harmonized to compute indices using

multiple spectral bands.

Libraries compared; rasterio.warp, rioxarray, pyresample, opencv-python, GEE internal

resampling

Findings

rasterio: fastest for small scenes

rioxarray: best for reproducibility and metadata

pyresample: most accurate for geodesic kernels

opencv: fastest for bulk resampling, but lacks geospatial awareness

GEE: extremely fast due to cloud optimization

RESULTS AND DISCUSSIONS

The present study provides one of the most comprehensive comparative evaluations of

Python libraries dedicated to remote sensing and vegetation index (VI) analysis, covering the

full workflow from satellite data acquisition to index computation, diagnostic visualization,

and reproducibility assessment. By examining collection, preprocessing, radiometric and

atmospheric correction, cloud/shadow masking, resampling, spectral operations, data-cube

construction, and VI calculation, this research highlights not only functional differences among

existing libraries but also the methodological implications associated with each processing

step. Such a multi-layer analysis is increasingly relevant in modern geospatial research, where

transparency, interoperability, and reproducibility are considered as important as analytical

accuracy.

The comparative results reveal that different Python libraries excel in different stages

of the remote-sensing workflow, and no single library provides end-to-end coverage suitable

for all analytical contexts. Instead, scientific robustness emerges from the careful selection and

combination of libraries, depending on the accuracy, scalability, and reproducibility required.

Rasterio remains the most reliable engine for raster I/O due to its GDAL backbone,

high performance, and consistent metadata handling. While minimalist in design, its integration

with NumPy allows highly efficient band arithmetic and enables fine-grained control over

memory management. For vegetation indices requiring simple band ratios, rasterio-based

workflows are extremely fast and reproducible. However, rasterio inherently lacks advanced

abstractions such as data cubes, chunking, and lazy evaluation — functions that are essential

for multi-temporal and multi-sensor studies.

Xarray and rioxarray emerge as the most appropriate tools for building multi-

dimensional data structures that are FAIR-compliant and future-proof. Their chunked

computation, Dask integration, rich metadata handling, and clean API design make them

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

254

particularly suited for large-scale time-series VI analysis, phenological studies, and multi-year

land surface change detection. When combined with rasterio for I/O, rioxarray provides the

highest degree of reproducibility in the entire ecosystem.

Earth Engine API represents a different paradigm, where computation is offloaded to

a cloud-optimized geospatial processing engine. It excels in scalability, speed, and automated

preprocessing (including atmospheric correction), offering unparalleled performance for large-

area analyses and global-scale vegetation monitoring. Nevertheless, reliance on a third-party

server, limitations in offline reproducibility, and opaque internal correction models limit its

utility in contexts requiring complete methodological transparency. For scientific studies

adhering to strict reproducibility standards, Earth Engine must therefore be complemented by

open-source local workflows.

Spectral, originally designed for hyperspectral imaging, is the most specialized

library, offering native support for advanced spectral indices and transformations. It excels in

scenarios where classical multispectral indices are insufficient, such as early stress detection,

biochemical estimation, and high-spectral-resolution applications. Its computational

performance is moderate, but its value lies in domain specificity rather than speed.

EO-Learn stands out as the most comprehensive workflow manager, encapsulating

data, masks, and transformations in a robust object hierarchy (EOPatch). It supports machine-

learning workflows, cloud detection, mosaicking, and VI computation through tasks, enabling

seamless integration with scikit-learn and other ML frameworks. EO-Learn’s modularity and

high-level design make it exceptionally well suited for operational workflows, agricultural

monitoring chains, and reproducible pipelines in enterprise or governmental systems.

Cloud masking results underscore the importance of incorporating high-quality cloud

and shadow detection mechanisms in any VI pipeline. The comparison demonstrates that

s2cloudless and EO-Learn’s machine learning–based detectors outperform threshold-based

methods and basic QA masks, particularly in scenes containing thin cirrus clouds, complex

shadow geometries, or partially snow-covered surfaces. Vegetation indices such as NDVI,

SAVI, or NDWI are highly sensitive to cloud contamination, and accurate masking

significantly improves the reliability of extracted vegetation metrics.

Radiometric and atmospheric correction plays a crucial methodological role. While

many Python workflows rely on simple TOA reflectance calculations, this study shows that

physically-based BOA reflectance derived from Sen2Cor, MAJA, or Py6S provides more

reliable vegetation measurements, particularly when comparing multi-temporal datasets.

Differences between TOA and BOA indices can exceed 10–15% in some atmospheric

conditions, directly impacting agricultural intelligence systems and environmental monitoring

applications.

Resampling and spatial harmonization are foundational steps in any Sentinel-2

analysis due to its mixed-resolution architecture. The comparison demonstrates that opencv-

based resampling, despite its computational speed, is not geospatially reliable and should not

be used in scientific contexts. Rasterio, rioxarray, and pyresample remain the most accurate

resampling engines, with pyresample providing the best performance for geodesic kernels.

Misalignment between red, NIR, and red-edge bands introduces significant spectral distortions,

making high-quality geospatial resampling mandatory before VI computation.

The findings confirm that Python provides a flexible, powerful, and extensible

ecosystem capable of supporting every stage of the vegetation-index computation pipeline. The

open-source nature of these libraries aligns naturally with FAIR data principles and promotes

transparent, collaborative scientific workflows. Furthermore, Python’s native integration with

http://doi.org/10.59463/RJAS.2025.3.28

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

255

machine learning, cloud computing, parallel processing, and Jupyter Notebooks creates a

unified research environment unmatched by traditional desktop GIS tools.

Several limitations persist.

Fragmentation: no single library offers end-to-end support for all remote-sensing

tasks. Researchers must integrate multiple tools, increasing methodological complexity.

Atmospheric correction gaps: Python lacks a mature, fully Python-native

atmospheric correction package for Sentinel-2 comparable to Sen2Cor or MAJA.

Performance variance: Libraries such as rasterio and xarray exhibit strong

performance locally but struggle with extremely large datasets unless paired with Dask or

external HPC infrastructure.

The findings of this study demonstrate that methodological choices—including

atmospheric correction, cloud masking, VI formulation, and resampling—significantly affect

environmental interpretations. Automated or black-box approaches may therefore lead to

overconfidence or misinterpretation. Python’s transparency and flexibility offer researchers a

way to maintain methodological rigor while benefiting from automation and scalability.

CONCLUSIONS

In conclusion, Python provides a robust, flexible, and scientifically rigorous

ecosystem for vegetation-index computation, but achieving publication-grade accuracy

requires the careful selection and integration of multiple libraries across the preprocessing

chain. No library alone is sufficient; rather, the ecosystem as a whole enables high-quality

remote-sensing analytics. The comparative results, tables, and methodological discussions

presented in this study offer a foundational reference for researchers designing remote-sensing

workflows and set the stage for future advancements in open-source geospatial analysis.

BIBLIOGRAPHY
ANKU, K.; PERCIVAL, D.; VANKOUGHNETT, M.; LADA, R.; HEUNG, B., 2025 - Monitoring and

Prediction of Wild Blueberry Phenology Using a Multispectral Sensor. Remote Sens. 2025, 17(2), 334;

https://doi.org/10.3390/rs17020334.

BADIOUI, K.; VAN GRIENSVEN, A.; VERBEIREN, B., 2025 - Vegetation Monitoring of Palm Trees

in an Oasis Environment (Boudenib, Morocco) Using Automatic Processing of Medium-Resolution

Remotely Sensed Data. Geosciences 2025, 15(3), 104; https://doi.org/10.3390/geosciences15030104.

BAHRAMI, H.; CHOKMANI, K.; HOMAYOUNI, S.; ADAMCHUK, V.; ALBASHA, R.; SAIFUZZAMAN,

M.; LEDUC, M. Machine Learning-Based Alfalfa Height Estimation Using Sentinel-2 Multispectral

Imagery. Remote Sens. 2025, 17(10), 1759; https://doi.org/10.3390/rs17101759.

BARMA, S., DAMARLA, S. ȘI TIWARI, SK., 2020 - Semi-automatic technique for vegetation

analysis in Sentinel-2 multispectral remote sensing images using Python. In 2020, the 4th International

Conference on Electronics, Communications and Aerospace Technology (ICECA) (pp. 946-953). IEEE.

CHAVES, ME, SOARES, AR, FRONZA, JG ȘI SANCHES, ID., 2023 -. sr2vgi: a Python package for

calculating spectral vegetation indices from surface reflectance. În SIMPÓSIO BRASILEIRO DE

SENSORIAMENTO REMOTO, 20.(SBSR) .

GHILARDI, F., 2025 - SPATIAL Analysis and Remote Sensing for a Sustainable Environmental

Management based on Open Geographical Data.

GU, Y.; WYLIE, B.; BOYTE, S.; PICOTTE, J.; HOWARD, D.; SMITH, K.; NELSON, K., 2016 - An

Optimal Sample Data Usage Strategy to Minimize Overfitting and Underfitting Effects in Regression

Tree Models Based on Remotely-Sensed Data. Remote Sens. 2016, 8(11), 943;

https://doi.org/10.3390/rs8110943.

GUAN, S.; FUKAMI, K.; MATSUNAKA, H.; OKAMI, M.; TANAKA, R.; NAKANO, H.; SAKAI, T.;

NAKANO, K.; OHDAN, H.; TAKAHASHI, K., 2019 - Assessing Correlation of High-Resolution NDVI with

http://doi.org/10.59463/RJAS.2025.3.28
https://doi.org/10.3390/rs17020334

Research Journal of Agricultural Science, 57 (3), 2025; ISSN: 2668-926X

http://doi.org/10.59463/RJAS.2025.3.28

256

Fertilizer Application Level and Yield of Rice and Wheat Crops Using Small UAVs. Remote Sens. 2019,

11(2), 112; https://doi.org/10.3390/rs11020112.

HASSANZADEH, A.; ZHANG, F.; VAN AARDT, J.; MURPHY, S.; PETHYBRIDGE, S., 2021 - Broadacre

Crop Yield Estimation Using Imaging Spectroscopy from Unmanned Aerial Systems (UAS): A Field-

Based Case Study with Snap Bean. Remote Sens. 2021, 13(16), 3241;

https://doi.org/10.3390/rs13163241.

HITOURI, S.; MOHAJANE, M.; LAHSAINI, M.; ALI, S.; SETARGIE, T.; TRIPATHI, G.; D’ANTONIO, P.;

SINGH, S.; VARASANO, A., 2024 - Flood Susceptibility Mapping Using SAR Data and Machine Learning

Algorithms in a Small Watershed in Northwestern Morocco. Remote Sens. 2024, 16(5), 858;

https://doi.org/10.3390/rs16050858.

ISLAM, M.; ABDULLAH, H.; RAHMAN, M.; ISLAM, M.; TUHIN, A.; ASHIQUZZAMAN, M.; ISLAM, K.;

GEISSELER, D., 2025 - Mitigation of Water-Deficit Stress in Soybean by Seaweed Extract: The Integrated

Approaches of UAV-Based Remote Sensing and a Field Trial. Drones 2025, 9(7), 487;

https://doi.org/10.3390/drones9070487.

KOPPENSTEINER, L.; KAUL, H.; RAUBITZEK, S.; WEIHS, P.; EUTENEUER, P.; BERNAS, J.; MOITZI,

G.; NEUBAUER, T.; KLIMEK-KOPYRA, A.; BARTA, N., 2025 - Neugschwandtner, R. Estimating Wheat Traits

Using Artificial Neural Network-Based Radiative Transfer Model Inversion. Remote Sens. 2025, 17(11),

1904; https://doi.org/10.3390/rs17111904.

MONTERO, D., AYBAR, C., MAHECHA, MD, MARTINUZZI, F., SÖCHTING, M. ȘI WIENEKE, S., 2023

- A standardized catalog of spectral indices to advance the use of remote sensing in Earth system

research. Scientific Data, 10(1), 197.

SARAFANOV, M.; KAZAKOV, E.; NIKITIN, N.; KALYUZHNAYA, A., 2020 - A Machine Learning

Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example

Regarding Land Surface Temperature, Surface Albedo and NDVI. Remote Sens. 2020, 12(23), 3865;

https://doi.org/10.3390/rs12233865.

THORP, KR., 2024 - vegspec: A compilation of spectral indices of vegetation and

transformations in Python. SoftwareX, 28, 101928.

http://doi.org/10.59463/RJAS.2025.3.28
https://doi.org/10.3390/rs11020112
https://doi.org/10.3390/drones9070487
https://doi.org/10.3390/rs12233865

