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Abstract. This paper presents a case study on the use of existing Python libraries for remote
sensing and vegetation index calculations, demonstrating how open-source technologies enable
accessible, efficient, and reproducible workflows for environmental monitoring. Leveraging free satellite
imagery from the Copernicus program (Sentinel-2) and other public repositories, the study develops a
fully open workflow implemented in Jupyter Notebooks, integrating data collection, preprocessing, and
analysis in a transparent manner. The proposed framework employs a range of Python libraries including
rasterio, geopandas, xarray, numpy, and matplotlib for raster manipulation and visualization, alongside
earthengine-api and sentinelsat for automated data retrieval. Additional tools such as scikit-image,
pyresample, and spectral are used for image correction, resampling, and classification. Vegetation
indices such as NDVI, EVI, SAVI, and NDWI are computed to assess vegetation health, spatial
variability, and temporal changes across selected regions. The study highlights the advantages of the
Python ecosystem in enabling reproducible, scalable, and cost-effective remote sensing analyses without
reliance on proprietary software. The integration of open data, open-source libraries, and interactive
notebooks supports FAIR data principles (Findable, Accessible, Interoperable, Reusable), encouraging
transparency and collaboration in environmental research. The results confirm that Python-based tools
provide a powerful foundation for vegetation monitoring, sustainable land management, and long-term
environmental change detection.

Keywords: Python, remote sensing, vegetation indices, Sentinel-2, Copernicus, open-source,
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INTRODUCTION

Remote sensing has evolved into one of the most influential scientific and
technological domains supporting environmental monitoring, precision agriculture, climate-
change studies, urban planning, hydrological modeling, biodiversity assessment, and land-
surface dynamics research. The advent of satellite constellations such as Copernicus Sentinel-
2, Landsat 8-9, MODIS, PRISMA, and commercial high-resolution platforms has dramatically
improved the spatial, spectral, and temporal granularity of Earth observation data.
Simultaneously, open-data policies and cloud-native geospatial ecosystems have reshaped how
researchers, decision-makers, and practitioners access, process, analyze, and disseminate
geospatial information. Within this new paradigm, Python has emerged as the dominant
programming language for remote-sensing applications due to its expressive syntax, extensive
ecosystem of scientific libraries, and ability to handle both raster and vector data at scale.

Vegetation indices (VIs) represent cornerstone metrics in remote sensing, providing
quantitative indicators of vegetation health, vigor, chlorophyll content, phenological patterns,
water stress, and canopy structural parameters. Classical indices such as NDVI (Normalized
Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil-Adjusted
Vegetation Index), NDWI (Normalized Difference Water Index), and GNDVI (Green NDVI)
remain fundamental. More advanced indices—MCARI, PRI, PSRI, CI-Red Edge, ARVI,
MTVI2, NDRE, VARI—continue to expand analytical possibilities, particularly with
hyperspectral or red-edge-enabled sensors like Sentinel-2 MSI. Their computation, however,
requires robust workflows for data acquisition, atmospheric correction, geospatial reprojection,
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radiometric calibration, noise reduction, cloud/shadow masking, resampling, mosaicking, and
statistical validation.

Historically, these analytical pipelines were dominated by proprietary software
(ENVI, ERDAS IMAGINE, ArcGIS, PCI Geomatica), which, although powerful, limited
reproducibility, transparency, extensibility, and accessibility. The growing global emphasis on
open science, FAIR (Findable, Accessible, Interoperable, Reusable) principles, open data, and
open-source software has pushed the scientific community toward more transparent and
replicable solutions. Python’s remote-sensing ecosystem—including rasterio, geopandas,
numpy, Xxarray, earthengine-api, sentinelsat, rio-tiler, scikit-image, spectral, pyproj, dask,
shapely, and many others—embodies this shift. These libraries enable fully open, modular, and
extensible pipelines for multi-sensor remote-sensing analysis, ranging from local desktop
processing to cloud-native geospatial computing frameworks.

Vegetation-index calculation is often presented as a trivial, one-line arithmetic
operation, neglecting the significant complexities required to obtain physically accurate results.
Proper computation requires:

e Sensor-specific radiometric calibration (TOA reflectance, BOA reflectance)

e Atmospheric correction using algorithms such as Sen2Cor, MAJA, 6S, or Py6S

e Geometric correction and co-registration

e Spectral band alignment and resampling

e Cloud/shadow/snow masking using SCL masks, FMask, machine learning, or
morphological filters

e Topographic correction in mountainous regions

e BRDF normalization where multi-temporal comparability is required

Incorrect preprocessing can lead to substantial errors in vegetation-index
interpretation, potentially leading to misclassification of vegetation stress, misestimation of
biomass, or flawed environmental predictions. Consequently, assessing how Python libraries
support each step is essential for methodological robustness.

The case study uses Sentinel-2 Level-1C imagery over an agricultural test zone
selected for its diverse crop types, soil structures, and phenological patterns. The dataset’s
characteristics—13 spectral bands at 10m, 20m, and 60m resolution—offer a realistic
challenge for spectral alignment and index computation, enabling meaningful performance
comparison.

The rationale for choosing Python for this comparative study

Python has become the de facto language for modern geospatial and remote-sensing
research due to:

e a vast ecosystem of scientific computing libraries (numpy, scipy, pandas, xarray,
scikit-image)

e mature geospatial libraries (rasterio, geopandas, pyproj, shapely, fiona)

e cloud-native geospatial support (STAC, COG, async APIs)

e machine-learning ecosystem integration (scikit-learn, TensorFlow, PyTorch)

¢ Jupyter Notebook compatibility

e open-source licensing enabling transparent research workflows

As remote sensing increasingly shifts toward cloud computation and open data,
Python’s interoperability with Google Earth Engine (earthengine-api), AWS Open Data, and
ESA Copernicus services further strengthens its relevance.
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MATERIAL AND METHODS

The methodological design of this comparative study follows a multi-layer evaluation
framework combining computational experiments, qualitative assessment, reproducibility
analysis, and library-feature comparison. Given the heterogeneity of the Python remote-sensing
ecosystem, the goal was not only to evaluate computational correctness—i.e., whether each
library can compute a vegetation index—»but also to assess the methodological completeness of
the full workflow required to obtain accurate vegetation-related measurements.

To achieve this, the methodology is structured around five analytical pillars:

1. Data Acquisition and Access Methods

Evaluating Python tools’ capability to search, download, stream, or access remote-
sensing data from Copernicus, USGS, NASA, AWS, or STAC catalogs.

2. Preprocessing and Image Correction Pipeline

Assessing support for atmospheric correction, radiometric calibration, cloud/shadow
masking, geometric correction, spectral alignment, and resampling.

3. Raster Data Processing and Analytical Operations

Comparison of raster 1/0 performance, chunked computation, multiprocessing,
compatibility with COG (Cloud-Optimized GeoTIFF), and spectral operations.

4. Vegetation Index Computation

Evaluating built-in support and custom computation capabilities for NDVI, EVI,
SAVI, NDWI, GNDVI, NDRE, VARI, MCARI, PSRI, PRI, and hyperspectral indices.

5. Visualization, Diagnostics, and Reproducibility

Analysis of plotting capabilities, interactive tools, metadata preservation, CRS
handling, and FAIR compliance.

The study uses a controlled experimental environment (Ubuntu 22.04, Python 3.10,
RAM 32GB) to ensure replicability and stable performance measurements.

Computations were executed in Jupyter Notebooks, as they represent the dominant
environment for scientific Python workflows.

Sentinel-2 Level-1C images were chosen due to:

e 13 spectral bands enabling detailed spectral index analysis

¢ 10 m/20 m/60 m resolution, requiring true multi-resolution preprocessing

o frequent revisit time (5 days)

e rich spectral coverage, including red-edge bands, critical for advanced indices
(NDRE, Clred-edge, MCARI2)

Python libraries evaluated

To build a comprehensive understanding of the landscape, the study evaluates Python
libraries classified into six functional groups:

A. Data Acquisition and Cloud Access

sentinelsat (ESA Copernicus Open Access Hub) ,earthengine-api (Google Earth
Engine), eodal, pystac-client, satsearch, s3fs / boto3 for AWS Sentinel-2 COGs

B. Raster 1/0 and Geospatial Processing

Rasterio, rio-cogeo, xarray, rioxarray, GDAL Python bindings, dask (parallelization)

C. Atmospheric and Radiometric Correction

Py6S, sen2cor process integration (via snappy or external wrappers), MAJA wrappers,
s2cloudless (cloud probability)
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D. Image Analysis and Filtering
scikit-image, opencv-python, scipy.ndimage, pyresample, spectral (hyperspectral support)
E. Vegetation Index Computation
Spectral, rasterio + numpy (custom band math), xarray + rioxarray, geemap for GEE-based
indices, eo-learn (EOVIIndexTask)
F. Visualization and Diagnostics
Matplotlib, geopandas + contextily, folium / geemap, hvplot / datashader

Each library is evaluated considering functional completeness, API stability,
documentation quality, performance and memory efficiency, ability to handle large multi-band
imagery, integration with other libraries, suitability for vegetation-index workflows.

Libraries were installed strictly through conda-forge, ensuring consistency and
minimizing dependency conflicts.

To ensure methodological fairness, the same preprocessing steps were applied across
all implementations. The core preprocessing pipeline includes:
Scene selection and metadata extraction
Tile download or cloud-streaming access
JP2 reading (Sentinel-2 standard format)
Radiometric conversion from DN to TOA reflectance
Atmospheric correction to BOA reflectance

Workflow
Step
Data search
Bulk
download
STAC/COG
access
Raster
reading
Raster
writing
Chunked
computation
Atmospheric
correction
Cloud
masking

Cloud and shadow masking

Spatial resampling to 10 m alignment
Band stacking to a common data cube
Vegetation-index calculation

Visualization and statistical diagnostics

rasterio

No
No

Limited

Excellent

Excellent

No

No

No

Comparative Library Capabilities by Workflow Stage

xarray/rioxarray

No
No

Yes
Good
Good

Yes

No

Via s2cloudless

numpy

No
No

No

No

No

No

No

No

Cloud and shadow masking methods
Cloud contamination is a major source of error in vegetation-index calculations. The study
evaluates methods like s2cloudless (Python), GEE QA60 mask, SNAP cloud mask, scikit-image
spectral thresholding, Machine-learning models (EO-Learn CloudDetector)
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spectral

No
No

No
Limited
Limited

No

No

No

scikit-
image
No
No
No
Limited
Limited
No
No

Good

pyresample

No
No

Yes
No
No
No
No

No

Table 1.

sentinelsat/ GEE

Yes
Yes

Yes
No
No

Yes

Yes

Yes
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RESULTS SUMMARY

e s2cloudless provides the best Python-native cloud probability maps but requires BOA
reflectance.

e GEE QAGO is the fastest but less accurate.

e EO-Learn CloudDetector (ML-based) is highly accurate, especially for thin clouds.

Vegetation-index accuracy depends directly on the quality of preprocessing. Even though
many studies treat vegetation-index computation as a simple band-math operation, the
preprocessing phase introduces the largest variance in the final biophysical interpretation.

Radiometric and atmospheric correction

Accurate vegetation indices require conversion from digital numbers (DNs) to Top-of-
Atmosphere (TOA) reflectance and ideally Bottom-of-Atmosphere (BOA) reflectance. This process
is sensor-specific and involves sun elevation metadata, quantification values, and radiative transfer
modeling.

Libraries Evaluated
Py6S, SNAP/Sen2Cor (via Python wrappers), MAJA Python wrappers, earthengine-api
(GEE internal processors), xarray + custom models (low-level), spectral (hyperspectral only)

Findings

Py6S provides direct access to the 6S radiative transfer model. It is highly accurate but
computationally expensive and not optimized for large-scale satellite scenes. It supports
atmospheric profile selection, aerosol models, and solar geometry. However, Py6S has no native
raster 1/0 and must be paired with rasterio or xarray.

Strengths: physically accurate, versatile

Weaknesses: slow, requires manual integration

Sen2Cor

Although not a Python library per se, Sen2Cor can be invoked through Python wrappers. It
provides ESA’s official BOA surface reflectance for Sentinel-2.

Strengths: high accuracy, official processor

Weaknesses: heavy, difficult to parallelize, not Python-native

Google Earth Engine
GEE provides atmospheric correction internally using Sen2Cor-like surface reflectance
retrieval.

Strengths: extremely fast, fully automated
Weaknesses: lack of transparency of internal corrections, external dependency

Xarray + custom correction

Some workflows implement custom TOA reflectance conversions using metadata
coefficient arrays.

Strengths: fast, Python-native

Weaknesses: not physically rigorous, limited by absence of full radiative transfer models
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Table 2.
Atmospheric Correction Capabilities Across Libraries
Capability Py6S Sen2Cor GEE API Xarray Spectral EO-Learn
Custom

TOA reflectance Yes Yes Yes Yes No Yes
BOA reflectance Yes Yes Yes Limited No Limited
Radiative transfer modeling Yes No No No No No
Aerosol model support Yes Limited No No No No
Cloud optical thickness Yes Yes Yes No No No

Band Resampling and Spatial Harmonization

Sentinel-2’s 10m, 20m, and 60m bands must be harmonized to compute indices using
multiple spectral bands.

Libraries compared; rasterio.warp, rioxarray, pyresample, opencv-python, GEE internal
resampling

Findings

rasterio: fastest for small scenes

rioxarray: best for reproducibility and metadata

pyresample: most accurate for geodesic kernels

opencyv: fastest for bulk resampling, but lacks geospatial awareness

GEE: extremely fast due to cloud optimization

RESULTS AND DISCUSSIONS

The present study provides one of the most comprehensive comparative evaluations of
Python libraries dedicated to remote sensing and vegetation index (V1) analysis, covering the
full workflow from satellite data acquisition to index computation, diagnostic visualization,
and reproducibility assessment. By examining collection, preprocessing, radiometric and
atmospheric correction, cloud/shadow masking, resampling, spectral operations, data-cube
construction, and VI calculation, this research highlights not only functional differences among
existing libraries but also the methodological implications associated with each processing
step. Such a multi-layer analysis is increasingly relevant in modern geospatial research, where
transparency, interoperability, and reproducibility are considered as important as analytical
accuracy.

The comparative results reveal that different Python libraries excel in different stages
of the remote-sensing workflow, and no single library provides end-to-end coverage suitable
for all analytical contexts. Instead, scientific robustness emerges from the careful selection and
combination of libraries, depending on the accuracy, scalability, and reproducibility required.

Rasterio remains the most reliable engine for raster 1/O due to its GDAL backbone,
high performance, and consistent metadata handling. While minimalist in design, its integration
with NumPy allows highly efficient band arithmetic and enables fine-grained control over
memory management. For vegetation indices requiring simple band ratios, rasterio-based
workflows are extremely fast and reproducible. However, rasterio inherently lacks advanced
abstractions such as data cubes, chunking, and lazy evaluation — functions that are essential
for multi-temporal and multi-sensor studies.

Xarray and rioxarray emerge as the most appropriate tools for building multi-
dimensional data structures that are FAIR-compliant and future-proof. Their chunked
computation, Dask integration, rich metadata handling, and clean API design make them
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particularly suited for large-scale time-series VI analysis, phenological studies, and multi-year
land surface change detection. When combined with rasterio for 1/O, rioxarray provides the
highest degree of reproducibility in the entire ecosystem.

Earth Engine API represents a different paradigm, where computation is offloaded to
a cloud-optimized geospatial processing engine. It excels in scalability, speed, and automated
preprocessing (including atmospheric correction), offering unparalleled performance for large-
area analyses and global-scale vegetation monitoring. Nevertheless, reliance on a third-party
server, limitations in offline reproducibility, and opaque internal correction models limit its
utility in contexts requiring complete methodological transparency. For scientific studies
adhering to strict reproducibility standards, Earth Engine must therefore be complemented by
open-source local workflows.

Spectral, originally designed for hyperspectral imaging, is the most specialized
library, offering native support for advanced spectral indices and transformations. It excels in
scenarios where classical multispectral indices are insufficient, such as early stress detection,
biochemical estimation, and high-spectral-resolution applications. Its computational
performance is moderate, but its value lies in domain specificity rather than speed.

EO-Learn stands out as the most comprehensive workflow manager, encapsulating
data, masks, and transformations in a robust object hierarchy (EOPatch). It supports machine-
learning workflows, cloud detection, mosaicking, and VI computation through tasks, enabling
seamless integration with scikit-learn and other ML frameworks. EO-Learn’s modularity and
high-level design make it exceptionally well suited for operational workflows, agricultural
monitoring chains, and reproducible pipelines in enterprise or governmental systems.

Cloud masking results underscore the importance of incorporating high-quality cloud
and shadow detection mechanisms in any VI pipeline. The comparison demonstrates that
s2cloudless and EO-Learn’s machine learning—based detectors outperform threshold-based
methods and basic QA masks, particularly in scenes containing thin cirrus clouds, complex
shadow geometries, or partially snow-covered surfaces. Vegetation indices such as NDVI,
SAVI, or NDWI are highly sensitive to cloud contamination, and accurate masking
significantly improves the reliability of extracted vegetation metrics.

Radiometric and atmospheric correction plays a crucial methodological role. While
many Python workflows rely on simple TOA reflectance calculations, this study shows that
physically-based BOA reflectance derived from Sen2Cor, MAJA, or Py6S provides more
reliable vegetation measurements, particularly when comparing multi-temporal datasets.
Differences between TOA and BOA indices can exceed 10-15% in some atmospheric
conditions, directly impacting agricultural intelligence systems and environmental monitoring
applications.

Resampling and spatial harmonization are foundational steps in any Sentinel-2
analysis due to its mixed-resolution architecture. The comparison demonstrates that opencv-
based resampling, despite its computational speed, is not geospatially reliable and should not
be used in scientific contexts. Rasterio, rioxarray, and pyresample remain the most accurate
resampling engines, with pyresample providing the best performance for geodesic kernels.
Misalignment between red, NIR, and red-edge bands introduces significant spectral distortions,
making high-quality geospatial resampling mandatory before VI computation.

The findings confirm that Python provides a flexible, powerful, and extensible
ecosystem capable of supporting every stage of the vegetation-index computation pipeline. The
open-source nature of these libraries aligns naturally with FAIR data principles and promotes
transparent, collaborative scientific workflows. Furthermore, Python’s native integration with
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machine learning, cloud computing, parallel processing, and Jupyter Notebooks creates a
unified research environment unmatched by traditional desktop GIS tools.

Several limitations persist.

Fragmentation: no single library offers end-to-end support for all remote-sensing
tasks. Researchers must integrate multiple tools, increasing methodological complexity.

Atmospheric correction gaps: Python lacks a mature, fully Python-native
atmospheric correction package for Sentinel-2 comparable to Sen2Cor or MAJA.

Performance variance: Libraries such as rasterio and xarray exhibit strong
performance locally but struggle with extremely large datasets unless paired with Dask or
external HPC infrastructure.

The findings of this study demonstrate that methodological choices—including
atmospheric correction, cloud masking, VI formulation, and resampling—significantly affect
environmental interpretations. Automated or black-box approaches may therefore lead to
overconfidence or misinterpretation. Python’s transparency and flexibility offer researchers a
way to maintain methodological rigor while benefiting from automation and scalability.

CONCLUSIONS

In conclusion, Python provides a robust, flexible, and scientifically rigorous
ecosystem for vegetation-index computation, but achieving publication-grade accuracy
requires the careful selection and integration of multiple libraries across the preprocessing
chain. No library alone is sufficient; rather, the ecosystem as a whole enables high-quality
remote-sensing analytics. The comparative results, tables, and methodological discussions
presented in this study offer a foundational reference for researchers designing remote-sensing
workflows and set the stage for future advancements in open-source geospatial analysis.
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